Evolutionary algorithm has been receiving a remarkable attention due to the model-free and population-based parallel search attributes and much successful results are coming out. However, there are some problems in most of the evolutionary algorithms. The critical one is that it takes much time or large generations to search the global optimum in case of the objective function with multimodality. Another problem is that it usually cannot search all the local optima because it pays great attention to the search of the global optimum. In addition, if the objective function has several global optima, it may be very difficult to search all the global optima due to the global characteristics of the selection methods. To cope with these problems, at first we propose a preprocessing process, grid-filtering algorithm(GFA), and propose a new distributed evolutionary ...
본 논문은 통행배정과 교통신호제어기의 결합문제를 풀기 위한 새로운 해법의 제시를 목적으로 한다. 통행배정과 신호제어 결합모형은 네트웍 디자인 문제(Network Design Problem)로 비선형 비분리 목적함수(Nonlinear and Nonseparable Objective Function)와 비선형제약 및 비컴백스 집합(Nonlinear and Non-Convex Set)형태로 인해 다수의 국지해(Multiple Local Optima)를 갖는 특징이 있다. 따라서 이렇게 복잡하고 난해한 문제를 푸는 해법은 많은 국지해중에 가장 최소한 값(Global Optima)을 찾을수 있는 방법을 제공하여야한다. 전체최적해(Global Optima)를 찾 을 수 있는 기존의 방법들은 확률적최적화방법(Stochastic Optimization Methods)에 속한다. 본연구에서는 이러한 방법중 금속공학에서 발 견된 모의담금빌법(Simulated Annealing Method)에 근거한 해법을 제시한다. 이방법이 통행배정과 신호제어 결합문제에 적용되는지 검토하기 위해 이해법의 수렴성(Convergence)을 증명했으며 또한 실제 프로그램된 모형을 작은 고안된 네트워크에 적 용했다. 마지막으로는 개발된 해법의 실용성을 실험하기 위해 두 가지의 보다 큰 도로망에 적용 및 분석을 했다.
Jeseop Rhie;Minseo Jang;Do Hyoung Shin;Hyungseo Han;Seungwoo Lee
International conference on construction engineering and project management
/
2024.07a
/
pp.769-774
/
2024
The availability of PMT(Project Management Tool) in the market has been increasing rapidly in recent years and Significant advancements have been made for project managers to use for planning, monitoring, and control. Recently, studies applying the Reinforcement-Learning Based Construction Schedule Simulation algorithm for construction project process planning/management are increasing. When reinforcement learning is applied, the agent recognizes the current state and learns to select the action that maximizes the reward among selectable actions. However, if the action of global optimal points is not selected in simulation selection, the local optimal resource may receive continuous compensation (+), which may result in failure to reach the global optimal point. In addition, there is a limitation that the optimization time can be long as numerous iterations are required to reach the global optimal point. Therefore, this study presented a method to improve optimization performance by increasing the probability that a resource with high productivity and low unit cost is selected, preventing local optimization, and reducing the number of iterations required to reach the global optimal point. In the performance evaluation process, we demonstrated that this method leads to closer approximation to the optimal value with fewer iterations.
Journal of the Korean Institute of Telematics and Electronics S
/
v.34S
no.5
/
pp.52-65
/
1997
For the degradation of severe noise and ill-conditioned blur the optimization function has the solution spaces which have many local optima around global solution. General restoration methods such as inverse filtering or gradient methods are mainly dependent on the properties of degradation model and tend to be isolated into a local optima because their convergences are determined in the convex space. Hence we introduce genetic algorithm as a searching method which will search solutions beyond the convex spaces including local solutins. In this paper we introudce improved evaluation square error) and fitness value for gray scaled images. Finally we also proposed the local fine tunign of window size and visit number for delicate searching mechanism in the vicinity of th global solution. Through the experiental results we verified the effectiveness of the proposed genetic operators and evaluation function on noise reduction over the conventional ones, as well as the improved performance of local fine tuning.
Journal of Institute of Control, Robotics and Systems
/
v.17
no.12
/
pp.1210-1218
/
2011
GA (Genetic Algorithms) are efficient for searching for global optima but may have some problems such as premature convergence, convergence to local extremum and divergence. These phenomena are related to the evolutionary operators. As population diversity converges to low value, the search ability of a GA decreases and premature convergence or converging to local extremum may occur but population diversity converges to high value, then genetic algorithm may diverge. To guarantee that genetic algorithms converge to the global optima, the genetic operators should be chosen properly. In this paper, we analyze the effects of the selection operator, crossover operator, and mutation operator on convergence properties, and propose the sweeping method of mutation probability and elitist propagation rate to maintain the diversity of the GA's population for getting out of the premature convergence. Results of simulation studies verify the feasibility of using these sweeping operators to avoid premature convergence and convergence to local extrema.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.05a
/
pp.134-137
/
2000
Genetic algorithms(GAs) have been widely used as a method to solve optimization problems. This is because GAs have simple and elegant tools with reproduction, crossover, and mutation to rapidly discover good solutions for difficult high-dimensional problems. They, however, do not guarantee the convergence of global optima in GA-hard problems such as deceptive problems. Therefore we proposed a Schema Co-Evolutionary Algorithm(SCEA) and derived extended schema 76988theorem from it. Using co-evolution between the first population made up of the candidates of solution and the second population consisting of a set of schemata, the SCEA works better and converges on global optima more rapidly than GAs. In this paper, we show advantages and efficiency of the SCEA by applying it to some problems.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.9-11
/
1999
조합 최적화 문제인 Traveling Salesman problems(TSP)을 Genetic Algorithm(GA)과 Local Search Heuristic인 Lin-Kernighan(LK) Heuristic[2]을 이용하여 접근하는 것은 최적해를 구하기 위해 널리 알려진 방법이다. 이 논문에서는 LK를 이용하여 주어진 TSP 문제에서 Local Optima를 찾고, GA를 이용하여 Local Optimal를 바탕으로 Global Optima를 찾는데 이용하게 된다. 여기서 이런 GA와 LK를 이용하여 TSP 문제를 풀 경우 해가 점점 수렴해가면서 중복된 유전자가 많이 생성된다. 이런 중복된 유전자를 제거함으로써 탐색의 범위를 보다 넓고 다양하게 검색하고, 더욱 효율적으로 최적화를 찾아내는 방법에 대해서 논하겠다. 이런 방법을 이용하여 rat195, gil262, lin318의 TSP문제에서 효율적으로 수행된다.
The Journal of the Korea institute of electronic communication sciences
/
v.13
no.3
/
pp.587-592
/
2018
An adaptive beam forming system using a phased array antenna improves communication quality by beam forming adaptively to a communication environment having an interference signal. For adaptive beam forming, a good combination of the phases of the excited signals to each radiating element of the phased array antenna should be calculated. In this paper, improved particle swarm optimization algorithm that adds a re-spreading procedure according to particle density was proposed to increase the probability of good phase shift combination output.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.5
no.4
/
pp.281-285
/
2005
Learning and evolving are two basics for data mining. As compared with classical learning theory based on objective function with minimizing training errors, the recently evolutionary computing has had an efficient approach for constructing optimal model without the minimizing training errors. The global search of evolutionary computing in solution space can settle the local optima problems of learning models. In this research, combining co-evolving algorithm into statistical learning theory, we propose an co-evolutionary computing for statistical learning theory for overcoming local optima problems of statistical learning theory. We apply proposed model to classification and prediction problems of the learning. In the experimental results, we verify the improved performance of our model using the data sets from UCI machine learning repository and KDD Cup 2000.
조합 최적화 문제인 Traveling Salesman problems(TSP)을 Genetic Algorithm(GA)[3]과 Local Search Heuristic Algorithm[8]을 이용하여 접근하는 것은 최적해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP문제를 해결하기 위한 또 다른 접근법으로, 다수의 Ant들이 Tour들을 찾는 ACS(Ant Colony System) Algorithms[4][6][7]을 소개하고, ACS에서 Global Optima를 찾는 과정에서, 이미 이루어져 있는 Ant들의 Tour결과들을 서로 비교한다. Global Updating Rule에 의해 Global Best Tour 에 속해 있는 각 Ant Tour의 edge들을 update하는 ACS Algorithm에, 각 루프마다 Ant Tour들을 우성과 열성 인자들로 구분하고, 각각의 우성과 열성 인자들에 대해서 Global Updating Rule에 기반한 가중치를 적용(Weight Updating Rule)하므로서 기존의 ACS Algorithm보다 효율적으로 최적 해를 찾아내는 방법에 대해서 논하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.