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Abstract: The availability of PMT(Project Management Tool) in the market has been increasing rapidly 

in recent years and Significant advancements have been made for project managers to use for planning, 

monitoring, and control. Recently, studies applying the Reinforcement-Learning Based Construction 

Schedule Simulation algorithm for construction project process planning/management are increasing. 

When reinforcement learning is applied, the agent recognizes the current state and learns to select the 

action that maximizes the reward among selectable actions. However, if the action of global optimal 

points is not selected in simulation selection, the local optimal resource may receive continuous 

compensation (+), which may result in failure to reach the global optimal point. In addition, there is a 

limitation that the optimization time can be long as numerous iterations are required to reach the global 

optimal point. Therefore, this study presented a method to improve optimization performance by 

increasing the probability that a resource with high productivity and low unit cost is selected, preventing 

local optimization, and reducing the number of iterations required to reach the global optimal point. In 

the performance evaluation process, we demonstrated that this method leads to closer approximation to 

the optimal value with fewer iterations. 

Key words:  Time-Cost Optimization, Local Optima, Reinforcement-Learning Based Construction 

Schedule Simulation 

1. INTRODUCTION 

In recent years, the availability of Project Management Tools (PMT) in the market has experienced a 

rapid increase. Significantly, these tools have advanced to cater to the needs of project managers, 

offering enhanced capabilities for planning, monitoring, and control [1]. 

Among the diverse array of tools, the Reinforcement-Learning Based Construction Schedule 

Simulation algorithm has emerged as a potential game-changer for the field of construction project 

process planning and management. Consequently, research in this area has witnessed a notable surge 
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[2]. Reinforcement learning, known for its effectiveness in addressing management issues pertaining to 

resource allocation and activity sequencing, including time-saving scheduling and activity predecessor 

selection, has garnered considerable attention. However, in previous studies, project managers 

encountered challenges in using simulation techniques due to the substantial effort and knowledge 

required, along with the failure to consider on-site conditions in deriving productivity by equipment 

combinations and the lack of consideration for risk. [3] proposed a method for deriving productivity by 

equipment combinations using Discrete Event Simulation (DES), while [4] introduced a conceptual 

approach for optimizing construction project planning through the application of equipment 

combination derivation data and risk data. However, the study encountered a phenomenon of local 

optima during the process of utilizing simulation techniques based on the aforementioned productivity 

by equipment combinations data and risk data [3],[4]. Local optima refers to points in a problem space 

where a proposed solution is optimal within a neighborhood of points, but not necessarily optimal in the 

entire problem space. If the action of global optimal points is not selected in simulation selection, the 

local optimal resource may receive continuous compensation (+), which may result in failure to reach 

the global optimal point. We encountered the phenomenon of local optima during the process of 

selecting the optimal equipment combination for each activity, and devised a method to address this 

phenomenon. Therefore, this study presented a method to improve optimization performance by 

increasing the probability that equipment with high productivity and low unit cost is selected, preventing 

local optimization, and reducing the number of iterations required to reach the global optimal point. 

2. CONSTRUCTION SCHEDULE SIMULATION IN THIS STUDY 

This study utilized a construction schedule simulation created by conceptual approach based on 

reinforcement learning, utilizing information derived from productivity by equipment combination 

using DES, and risk data [3],[4],[5].  

2.1. Conceptual approaches based on reinforcement learning 

 

 
 

 

Reinforcement learning is a subset of artificial intelligence in which an Agent in a particular 

Environment recognizes the current State and takes Actions to maximize the Reward obtained from the 

environment. When these characteristics are applied to construction project planning, it can be 

represented as shown in Figure 1.  

The agent selects actions to determine the cost and duration of the process, and by repeating these 

steps, the total duration and total cost of the entire construction schedule are determined. The agent 

learns in a manner that maximizes rewards by comparing the total duration and total cost with the 

objective duration and objective cost, and assigns rewards (+) or penalties (-) accordingly [4]. 

2.2. Derivation of Productivity by Equipment Combination using DES 

     To derive equipment combinations and productivity, the following process was conducted. Firstly, 

site observations were made, and the process was analyzed. Subsequently, DES-based process modeling 

and coding were performed. In this study, the 'Cyclone,' a DES-based optimal construction simulation 

methodology, was utilized [6]. Next, task durations were calculated based on the standard production 

capacity of construction equipment. Then, equipment combination and productivity data were generated 

through DES simulation, and unit costs were determined by applying price information.[3] 

Figure 1. Conceptual Diagram of a Reinforcement Learning Based Construction Schedule Simulation 
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2.3. Risk Data 

Risk data refers to information about various risks that may occur during the process execution, 

including types of risks and probability distributions of risks (severity of occurrence, severity 

distribution).  

2.4. Utilizing Modified Adaptive Weight Approach (MAWA) function for multi-objective 

optimization 

Construction scheduling simulation aims to optimize project planning within a constrained duration 

and at minimum cost, requiring consideration of both time and construction expenses. For this purpose, 

at least two objective functions are needed. To simultaneously optimize multiple objective functions, 

Multi-Objective Optimization is necessary. One commonly used method in Multi-Objective 

Optimization is the Weighted Sum Method, where weights are assigned to each objective function to 

transform them into a single objective function. The weighted sum method is intuitive and easy to 

interpret, as well as simple to code and apply. In this study, we applied the MAWA function, one of the 

weighting methods, by modifying it to suit the purpose of the fitness function. The results calculated 

through the fitness function are compared with target values and play a role in assigning rewards (+) or 

penalties (-) to the agent. Eq. (1) is the modified equation [7]. 
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3. PREVENTING LOCAL OPTIMA THROUGH INITIAL SELECTION 

 PROBABILITY ADJUSTMENT 

 

 

Figure 2. Diagram of Construction Schedule Simulation Model Learning Process in This Study 

 

The construction schedule simulation utilized in this study guides the selection of optimal equipment 

combinations by randomly choosing equipment combinations for each construction activity and 

assigning rewards (+) or penalties (-) based on the productivity and cost information of the selected 

equipment combinations for the entire construction activities, as illustrated in the figure 2. 

 

 

Figure 3. Local And Global Optima 

 

If the optimal equipment combination fails to be selected due to unfortunate circumstances and local 

optimal combinations persistently chosen, it leads to a situation where these local optimal combinations 

receive continuous rewards, preventing the attainment of the global optimization point. To prevent such 

local optimization, the overall optimization can be induced by adjusting the probability of arbitrary 

selections on the simulation based on the relationship between productivity and cost of equipment 

combinations. 
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3.1. Utilization of Productivity and Unit Cost Based on Equipment Combinations Derived 

Through DES 

 To optimize the time-cost of construction scheduling, it is essential to select the optimal equipment 

combination that maximizes productivity while minimizing unit costs, considering the productivity and 

unit costs associated with the equipment combinations derived through DES. From this perspective, it 

can be seen that efficiency is maximized when productivity is high and unit costs are low. Therefore, 

the relationship between efficiency, productivity, and costs can be expressed as Equation (2) below. 

 

                       
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦[𝑚3/𝑑𝑎𝑦]

𝑈𝑛𝑖𝑡 𝐶𝑜𝑠𝑡[𝐾𝑅𝑊/𝑚3]
= 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦                                                                                            (2) 

 

3.2. Initial Selection Probability Adjustment for Highly Efficient Equipment Combinations 

The manager adjusts the initial selection probability of equipment combinations with higher 

efficiency to be higher. Depending on the number of equipment combinations and the distribution of 

efficiency for each combination in the relevant trade, administrators can determine the increase in 

selection probability by setting the number of top efficiency equipment combinations and parameters 

such as the increase multiplier and ratio.  

 

4. APPLICATION OF METHODOLOGY AND PERFORMANCE EVALUATION 

In this study, a construction schedule sample and a statement sample were created for the application 

of the methodology aimed at preventing local optima through initial selection probability adjustment.   

This methodology was applied in the simulation with a target duration of 36 days and a target cost of 

970,000,000 won. The simulation was conducted with iteration numbers set to 50, 150, and 300, each 

repeated five times. Additionally, the simulation was carried out under the same conditions without 

applying the methodology. 

 

 

 

Figure 4. Part Of A Statement Sample 

 

 

Figure 5. Part Of A Construction Schedule Sample 
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Table 1. Total Duration And Total Cost At 50 Iterations 

Iteration_50 Try-1 Try-2 Try-3 Try-4 Try-5 

A_TD(day) 33 33 33 33 33 

B_TD(day) 33 33 33 33 33 

A_TC(won) 952393279 926786335 927942183 933889191 904719222 

B_TC(won) 979181651 984827207 1012565230 1004605327 1008292380 

 

Table 2. Total Duration And Total Cost At 150 Iterations 

Iteration_150 Try-1 Try-2 Try-3 Try-4 Try-5 

A_TD(day) 33 33 33 33 33 

B_TD(day) 33 33 33 33 33 

A_TC(won) 894755485 886770360 882674161 879304843 890496646 

B_TC(won) 911091536 926980285 946870015 953130495 929414833 

 

Table 3. Total Duration And Total Cost At 300 Iterations 

Iteration_300 Try-1 Try-2 Try-3 Try-4 Try-5 

A_TD(day) 33 33 33 33 33 

B_TD(day) 33 33 33 33 33 

A_TC(won) 891629796 895900065 874900414 889217371 884425552 

B_TC(won) 913167791 911968907 895779208 914832777 923983231 

 

 

 

Figure 6. Cost Per Iteration 

 

The three tables above represent the results of simulations based on the construction schedule sample 

and the statement sample. For alphabet A, it represents the application of the methodology, while for B, 

it signifies the case where the methodology was not applied. For Total Duration, in this case, the duration 

converged to 33 days under all circumstances. Regarding Total Cost, a lower amount was obtained when 

the methodology was applied in all iterations and tries. In Figure 6, a line graph connecting the average 

points of five tries for each iteration is presented. Upon examining the line graph, it is evident that the 

slope is smooth, and it becomes even smoother when transitioning from 50 to 150 iterations to 150 to 

300 iterations. This indicates a closer approach to cost-duration optimization as the number of iterations 

increases. Furthermore, when the methodology is applied, the graph shows a smoother trend compared 

to when it is not applied, and there is a similarity in values between 150 and 300 iterations.  

Through these results, it can be observed that when applying the Methodology, it continuously learns 

better points compared to when it is not applied, thereby preventing falling into local optima. 

Furthermore, it was confirmed that faster convergence towards the optimal point allows for reducing 

the number of iterations required for optimization, leading to time savings and thus improving 

optimization performance.  
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5. CONCLUSION 

In this study, we proposed a methodology for preventing local optima and accelerating the attainment 

of optimal points in construction schedule simulation based on reinforcement learning. This was 

achieved by leveraging simulations incorporating equipment combinations and productivity data 

derived from DES, along with risk considerations. Through the application of reinforcement learning, 

we demonstrated the ability to mitigate local optima phenomena and expedite the convergence to 

optimal points, thereby reducing the optimal time in construction scheduling. In this study, this method 

was utilized to induce learning towards higher efficiency by leveraging the relationship between 

productivity and unit cost during the process of selecting the optimal equipment combination. However, 

even if other essential factors, such as those considering site conditions, in addition to equipment 

combinations and risk, are researched, or if a construction simulation is developed that optimizes by 

selecting factors other than the optimal equipment combination through reinforcement learning, this 

methodology can still be effectively utilized as long as it identifies elements that facilitate more efficient 

learning when these resources are selected. We anticipate that this methodology developed by our 

research team will not only be applied to the construction schedule simulation under development but 

also to various other construction schedule simulations. We hope that it will significantly contribute to 

the advancement of construction scheduling optimization technology. 
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