• 제목/요약/키워드: Global Function Approximation

검색결과 50건 처리시간 0.027초

웨이블렛 신경망을 이용한 전역근사 메타모델의 성능비교 (Global Function Approximations Using Wavelet Neural Networks)

  • 신광호;이종수
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.753-759
    • /
    • 2009
  • Feed-forward neural networks have been widely used as function approximation tools in the context of global approximate optimization. In the present study, a wavelet neural network (WNN) which is based on wavelet transform theory is suggested as an alternative to a traditional back-propagation neural network (BPN). The basic theory of wavelet neural network is briefly described, and approximation performance is tested using a nonlinear multimodal function and a composite rotor blade analysis problem. Laplacian of Gaussian function, Mexican function, and Morlet function are considered during the construction of WNN architectures. In addition, approximation results from WNN are compared with those from BPN.

Applications of Soft Computing Techniques in Response Surface Based Approximate Optimization

  • Lee, Jongsoo;Kim, Seungjin
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1132-1142
    • /
    • 2001
  • The paper describes the construction of global function approximation models for use in design optimization via global search techniques such as genetic algorithms. Two different approximation methods referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the training data is not sufficiently provided or uncertain information may be included in design process. Fuzzy inference system is the central system for of identifying the input/output relationship in both methods. The paper introduces the general procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and presents their generalization capabilities in terms of a number of fuzzy rules and training data with application to a three-bar truss optimization.

  • PDF

크리깅 근사모델을 이용한 전역적 강건최적설계 (A Global Robust Optimization Using the Kriging Based Approximation Model)

  • 박경진;이권희
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1243-1252
    • /
    • 2005
  • A current trend of design methodologies is to make engineers objectify or automate the decision-making process. Numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, the Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, a design procedure for global robust optimization is developed based on the kriging and global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Robustness is determined by the DACE model to reduce real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. As the postprocess, the first order second-moment approximation method is applied to refine the robust optimum. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

함수 근사화를 위한 방사 기저함수 네트워크의 전역 최적화 기법 (A Global Optimization Method of Radial Basis Function Networks for Function Approximation)

  • 이종석;박철훈
    • 정보처리학회논문지B
    • /
    • 제14B권5호
    • /
    • pp.377-382
    • /
    • 2007
  • 본 논문에서는 방사 기저함수 네트워크의 파라미터를 전 영역에서 최적화하는 학습 알고리즘을 제안한다. 기존의 학습 알고리즘들은 지역 최적화만을 수행하기 때문에 성능의 한계가 있고 최종 결과가 초기 네트워크 파라미터 값에 크게 의존하는 단점이 있다. 본 논문에서 제안하는 하이브리드 모의 담금질 기법은 모의 담금질 기법의 전 영역 탐색 능력과 경사 기반 학습 알고리즘의 지역 최적화 능력을 조합하여 전 파라미터 영역에서 해를 찾을 수 있도록 한다. 제안하는 기법을 함수 근사화 문제에 적용하여 기존의 학습 알고리즘에 비해 더 좋은 학습 및 일반화 성능을 보이는 네트워크 파라미터를 찾을 수 있으며, 초기 파라미터 값의 영향을 크게 줄일 수 있음을 보인다.

진화퍼지 근사화모델에 의한 비선형 구조시스템의 최적설계 (Optimal Design of Nonlinear Structural Systems via EFM Based Approximations)

  • 이종수;김승진
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.122-125
    • /
    • 2000
  • The paper describes the adaptation of evolutionary fuzzy model ins (EFM) in developing global function approximation tools for use in genetic algorithm based optimization of nonlinear structural systems. EFM is an optimization process to determine the fuzzy membership parameters for constructing global approximation model in a case where the training data are not sufficiently provided or uncertain information is included in design process. The paper presents the performance of EFM in terms of numbers of fuzzy rules and training data, and then explores the EFM based sizing of automotive component for passenger protection.

  • PDF

유전 알고리즘을 이용한 모듈화된 신경망의 비선형 함수 근사화 (Nonlinear Function Approximation of Moduled Neural Network Using Genetic Algorithm)

  • 박현철;김성주;김종수;서재용;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.10-13
    • /
    • 2001
  • Nonlinear Function Approximation of Moduled Neural Network Using Genetic Algorithm Neural Network consists of neuron and synapse. Synapse memorize last pattern and study new pattern. When Neural Network learn new pattern, it tend to forget previously learned pattern. This phenomenon is called to catastrophic inference or catastrophic forgetting. To overcome this phenomenon, Neural Network must be modularized. In this paper, we propose Moduled Neural Network. Modular Neural Network consists of two Neural Network. Each Network individually study different pattern and their outputs is finally summed by net function. Sometimes Neural Network don't find global minimum, but find local minimum. To find global minimum we use Genetic Algorithm.

  • PDF

Semiparametric Kernel Fisher Discriminant Approach for Regression Problems

  • Park, Joo-Young;Cho, Won-Hee;Kim, Young-Il
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권2호
    • /
    • pp.227-232
    • /
    • 2003
  • Recently, support vector learning attracts an enormous amount of interest in the areas of function approximation, pattern classification, and novelty detection. One of the main reasons for the success of the support vector machines(SVMs) seems to be the availability of global and sparse solutions. Among the approaches sharing the same reasons for success and exhibiting a similarly good performance, we have KFD(kernel Fisher discriminant) approach. In this paper, we consider the problem of function approximation utilizing both predetermined basis functions and the KFD approach for regression. After reviewing support vector regression, semi-parametric approach for including predetermined basis functions, and the KFD regression, this paper presents an extension of the conventional KFD approach for regression toward the direction that can utilize predetermined basis functions. The applicability of the presented method is illustrated via a regression example.

비선형 구조물에 대한 이동 점근법(MMA)의 적용 (Application of Method of Moving Asymptotes for Non-Linear Structures)

  • 진경욱;한석영;최동훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.141-146
    • /
    • 1999
  • A new method, so called MMA(Method of Moving Asymptotes) was applied to the optimization problems of non-linear functions and non-linear structures. In each step of the iterative process, tile MMA generates a strictly convex approximation subproblems and solves them by using the dual problems. The generation of these subproblems is controlled by so called 'moving asymptotes', which may both make no oscillation and speed up tile convergence rate of optimization process. By contrast in generalized dual function, the generated function by MMA is always explicit type. Both the objective and behaviour constraints which were approximated are optimized by dual function. As the results of some examples, it was found that this method is very effective to obtain the global solution for problems with many local solutions. Also it was found that MMA is a very effective approximate method using the original function and its 1st derivatives.

  • PDF

분류시스템을 이용한 다항식기반 반응표면 근사화 모델링 (Development of Polynomial Based Response Surface Approximations Using Classifier Systems)

  • 이종수
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.127-135
    • /
    • 2000
  • Emergent computing paradigms such as genetic algorithms have found increased use in problems in engineering design. These computational tools have been shown to be applicable in the solution of generically difficult design optimization problems characterized by nonconvexities in the design space and the presence of discrete and integer design variables. Another aspect of these computational paradigms that have been lumped under the bread subject category of soft computing, is the domain of artificial intelligence, knowledge-based expert system, and machine learning. The paper explores a machine learning paradigm referred to as teaming classifier systems to construct the high-quality global function approximations between the design variables and a response function for subsequent use in design optimization. A classifier system is a machine teaming system which learns syntactically simple string rules, called classifiers for guiding the system's performance in an arbitrary environment. The capability of a learning classifier system facilitates the adaptive selection of the optimal number of training data according to the noise and multimodality in the design space of interest. The present study used the polynomial based response surface as global function approximation tools and showed its effectiveness in the improvement on the approximation performance.

  • PDF

비스플라인 분지한계법 기반의 전역최적화 알고리즘 개발 (Development of a Branch-and-Bound Global Optimization Based on B-spline Approximation)

  • 박상근
    • 대한기계학회논문집A
    • /
    • 제34권2호
    • /
    • pp.191-201
    • /
    • 2010
  • 본 연구는 비스플라인 근사기법을 사용한 분지한계법 기반의 새로운 전역 최적화 알고리즘에 관한 것이다. 본 연구에서는 알고리즘 구성 요소 및 이들의 구현 내용에 관한 상세히 설명한다. 핵심 요소로서, 상호분리되는 부공간으로의 설계 공간의 분할 작업이 있고, 이들 분할 부공간의 한계값 계산 작업이 있는데, 이들 모두는 실수형 비스플라인 볼륨모델에 의해 구현된다. 본 연구 알고리즘은 다양한 테스트 문제들을 가지고 해의 정확성, 함수호출 회수, 알고리즘 수행시간, 메모리 사용량, 알고리즘 수렴성 등 그 계산 성능들을 평가한다. 이러한 평가 결과는 제안 알고리즘이 직관에 의존하지 않는 완전 알고리즘이며, 대용량의 최적화 문제에도 높은 가능성이 있음을 보여주는 것이다.