• 제목/요약/키워드: Global Climate Model

검색결과 592건 처리시간 0.032초

Efficient Neural Network for Downscaling climate scenarios

  • Moradi, Masha;Lee, Taesam
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.157-157
    • /
    • 2018
  • A reliable and accurate downscaling model which can provide climate change information, obtained from global climate models (GCMs), at finer resolution has been always of great interest to researchers. In order to achieve this model, linear methods widely have been studied in the past decades. However, nonlinear methods also can be potentially beneficial to solve downscaling problem. Therefore, this study explored the applicability of some nonlinear machine learning techniques such as neural network (NN), extreme learning machine (ELM), and ELM autoencoder (ELM-AE) as well as a linear method, least absolute shrinkage and selection operator (LASSO), to build a reliable temperature downscaling model. ELM is an efficient learning algorithm for generalized single layer feed-forward neural networks (SLFNs). Its excellent training speed and good generalization capability make ELM an efficient solution for SLFNs compared to traditional time-consuming learning methods like back propagation (BP). However, due to its shallow architecture, ELM may not capture all of nonlinear relationships between input features. To address this issue, ELM-AE was tested in the current study for temperature downscaling.

  • PDF

Northward expansion trends and future potential distribution of a dragonfly Ischnura senegalensis Rambur under climate change using citizen science data in South Korea

  • Shin, Sookyung;Jung, Kwang Soo;Kang, Hong Gu;Dang, Ji-Hee;Kang, Doohee;Han, Jeong Eun;Kim, Jin Han
    • Journal of Ecology and Environment
    • /
    • 제45권4호
    • /
    • pp.313-327
    • /
    • 2021
  • Background: Citizen science is becoming a mainstream approach of baseline data collection to monitor biodiversity and climate change. Dragonflies (Odonata) have been ranked as the highest priority group in biodiversity monitoring for global warming. Ischnura senegalensis Rambur has been designated a biological indicator of climate change and is being monitored by the citizen science project "Korean Biodiversity Observation Network." This study has been performed to understand changes in the distribution range of I. senegalensis in response to climate change using citizen science data in South Korea. Results: We constructed a dataset of 397 distribution records for I. senegalensis, ranging from 1980 to 2020. The number of records sharply increased over time and space, and in particular, citizen science monitoring data accounted for the greatest proportion (58.7%) and covered the widest geographical range. This species was only distributed in the southern provinces until 2010 but was recorded in the higher latitudes such as Gangwon-do, Incheon, Seoul, and Gyeonggi-do (max. Paju-si, 37.70° latitude) by 2020. A species distribution model showed that the annual mean temperature (Bio1; 63.2%) and the maximum temperature of the warmest month (Bio5; 16.7%) were the most critical factors influencing its distribution. Future climate change scenarios have predicted an increase in suitable habitats for this species. Conclusions: This study is the first to show the northward expansion in the distribution range of I. senegalensis in response to climate warming in South Korea over the past 40 years. In particular, citizen science was crucial in supplying critical baseline data to detect the distribution change toward higher latitudes. Our results provide new insights on the value of citizen science as a tool for detecting the impact of climate change on ecosystems in South Korea.

기후변화에 따른 송악의 잠재서식지 분포 변화 예측 (Potential Impact of Climate Change on Distribution of Hedera rhombea in the Korean Peninsula)

  • 박선욱;구경아;서창완;공우석
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.325-334
    • /
    • 2016
  • We projected the distribution of Hedera rhombea, an evergreen broad-leaved climbing plant, under current climate conditions and predicted its future distributions under global warming. Inaddition, weexplained model uncertainty by employing 9 single Species Distribution model (SDM)s to model the distribution of Hedera rhombea. 9 single SDMs were constructed with 736 presence/absence data and 3 temperature and 3 precipitation data. Uncertainty of each SDM was assessed with TSS (Ture Skill Statistics) and AUC (the Area under the curve) value of ROC (receiver operating characteristic) analyses. To reduce model uncertainty, we combined 9 single SDMs weighted by TSS and resulted in an ensemble forecast, a TSS weighted ensemble. We predicted future distributions of Hedera rhombea under future climate conditions for the period of 2050 (2040~2060), which were estimated with HadGEM2-AO. RF (Random Forest), GBM (Generalized Boosted Model) and TSS weighted ensemble model showed higher prediction accuracies (AUC > 0.95, TSS > 0.80) than other SDMs. Based on the projections of TSS weighted ensemble, potential habitats under current climate conditions showed a discrepancy with actual habitats, especially in the northern distribution limit. The observed northern boundary of Hedera rhombea is Ulsan in the eastern Korean Peninsula, but the projected limit was eastern coast of Gangwon province. Geomorphological conditions and the dispersal limitations mediated by birds, the lack of bird habitats at eastern coast of Gangwon Province, account for such discrepancy. In general, potential habitats of Hedera rhombea expanded under future climate conditions, but the extent of expansions depend on RCP scenarios. Potential Habitat of Hedera rhombea expanded into Jeolla-inland area under RCP 4.5, and into Chungnam and Wonsan under RCP 8.5. Our results would be fundamental information for understanding the potential effects of climate change on the distribution of Hedera rhombea.

Accounting for Uncertainty Propagation: Streamflow Forecasting using Multiple Climate and Hydrological Models

  • 권현한;문영일;박세훈;오태석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1388-1392
    • /
    • 2008
  • Water resources management depends on dealing inherent uncertainties stemming from climatic and hydrological inputs and models. Dealing with these uncertainties remains a challenge. Streamflow forecasts basically contain uncertainties arising from model structure and initial conditions. Recent enhancements in climate forecasting skill and hydrological modeling provide an breakthrough for delivering improved streamflow forecasts. However, little consideration has been given to methodologies that include coupling both multiple climate and multiple hydrological models, increasing the pool of streamflow forecast ensemble members and accounting for cumulative sources of uncertainty. The approach here proposes integration and coupling of global climate models (GCM), multiple regional climate models, and numerous hydrological models to improve streamflow forecasting and characterize system uncertainty through generation of ensemble forecasts.

  • PDF

CMIP5 모형에서 나타난 겨울철 동아시아와 북태평양 지역의 엘니뇨 원격상관의 미래변화 (Future Changes in Atmosphere Teleconnection over East Asia and North Pacific associated with ENSO in CMIP5 Models)

  • 김선용;국종성
    • 한국기후변화학회지
    • /
    • 제6권4호
    • /
    • pp.389-397
    • /
    • 2015
  • The changes in the teleconnection associated with El Nin?o-Southern Oscillation (ENSO) over the East Asia and North Pacific under greenhouse warming are analyzed herein by comparing the Historical run (1970/1971~1999/2000) and the Representative Concentration Pathway (RCP) 4.5 run with 31 climate models, participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5). It is found that CMIP5 models have diverse systematic errors in simulating the ENSO teleconnection pattern from model to model. Therefore, we select 21 models based on the models' performance in simulating teleconnection pattern in the present climate. It is shown that CMIP5 models tend to project an overall weaker teleconnection pattern associated with ENSO over East Asia in the future climate than that in the present climate. It can be also noted that the cyclonic flow over the North Pacific is weakened and shifted eastward. However, uncertainties for the ENSO teleconnection changes still exist, suggesting that much consistent agreements on this future teleconnections associated with ENSO should be taken in a further study.

동아시아 지역에서의 지역 분광 모델을 이용하여 투영시킨 기후변화 시나리오 (Projected Climate Change Scenario over East Asia by a Regional Spectral Model)

  • 장은철;홍성유
    • 한국지구과학회지
    • /
    • 제32권7호
    • /
    • pp.770-783
    • /
    • 2011
  • 본 연구에서는 ECHAM5 모델을 통하여 생산된 현재 및 A1B 미래 기후 변화 시나리오에 따른 미래기후 자료를 미 환경예측 센터의 분광모델인 RSM을 이용하여 역학적 규모축소를 수행하였다. 현재 기후 모의는 1980-2000년 기간에 대하여 수행되었으며, 미래 기후 모의는 2040-2070 기간에 대하여 CORDEX에서 제시한 동아시아 영역에서 수행되었다. RSM의 현재 기후 모의 검증을 통해 이 모델이 기후 관점에서 대기 상태를 적절히 모의함을 판단할 수 있었다. 미래 기후 모의 결과를 현재 기후 모의 결과와 비교하여 본 결과, 여름철에 열대 해양, 남아시아, 일본 부근에서 강수가 증가하였으며, 겨울철에는 서북 태평양 지역과 열대 인도양에서 강수가 증가하였고 열대 동인도양에서는 감소하였다. 동아시아 강수의 기후장에 있어서는 미래 기후가 현재와 큰 차이를 보이지 않지만 2050년 이후의 여름철 강수는 점차 증가하는 추세를 나타내고 있다. 미래 기후의 지상 온도는 현재와 비교해 볼 때 명확한 상승이 분석되었다. 대기장에 있어서는 미래 기후에서 지구 온난화에 대한 반응으로 전체적으로 온도와 지위고도장이 증가하는 변화를 나타내었으며 이에 따라 상층 기압골이 발달함을 보였다.

고해상도 다중위성 강수자료와 분포형 수문모형의 유출모의 적용 (Application of High Resolution Multi-satellite Precipitation Products and a Distributed Hydrological Modeling for Daily Runoff Simulation)

  • 김종필;박경원;정일원;한경수;김광섭
    • 대한원격탐사학회지
    • /
    • 제29권2호
    • /
    • pp.263-274
    • /
    • 2013
  • 본 연구에서는 다중위성 강수자료의 수문학적 적용성을 평가하기 위하여 Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), Global Satellite Mapping of Precipitation (GSMaP), Climate Prediction Center (CPC) Morphing technique(CMORPH) 등 전 지구 규모의 고해상도 다중위성 강수자료와 분포형 수문모형을 이용하여 유출모의를 수행하였다. 충주댐 유역에 대하여 2002년 1월 1일부터 2009년 12월 31일까지의 기간에 대하여 Coupled Routing and Excess Storage (CREST) 모형을 적용하였다. 분석기간은 준비기간(2002-2003년, 2006-2007년), 보정기간(2004-2005년), 그리고 검증기간(2008-2009년)으로 구분하여 모의를 수행하였다. 각 다중위성 강수자료를 지상관측자료와 비교결과, 강수의 계절적 변동특성은 잘 반영하고 있으나 연강수량합계 및 월평균강수량에서 TMPA는 과대추정을, GSMaP과 CMORPH는 과소추정하는 경향을 보여주었다. 또한 유출분석결과, TMPA를 제외한 GSMaP과 CMORPH의 충주댐 유역에 대한 수문학적 적용성이 매우 낮은 것을 알 수 있었으며, 향후 다중위성 강수자료의 활용에 앞서 통계적 보정이나 강수알고리즘에 대한 개선이 필요한 것으로 판단된다.

낙동강 유역 환경유량에 대한 기후변화의 영향 분석 (An Analysis of the Effect of Climate Change on Nakdong River Environmental Flow)

  • 이아연;김상단
    • 한국물환경학회지
    • /
    • 제27권3호
    • /
    • pp.273-285
    • /
    • 2011
  • This study describes the modeling of climate change impact on runoff across southeast Korea using a conceptual rainfall-runoff model TANK and assesses the results using the concept of environmental flows developed by International Water Management Institute. The future climate time series is obtained by scaling the historical series, informed by 4 global climate models and 3 greenhouse gas emission scenarios, to reflect a $4.0^{\circ}C$ increase at most in average surface air temperature and 31.7% increase at most in annual precipitation, using the spatio-temporal changing factor method that considers changes in the future mean seasonal rainfall and potential evapotranspiration as well as in the daily rainfall distribution. Although the simulation results from different global circulation models and greenhouse emission scenarios indicate different responses in flows to the climate change, the majority of the modeling results show that there will be more runoff in southeast Korea in the future. However, there is substantial uncertainty, with the results ranging from a 5.82% decrease to a 48.15% increase in the mean annual runoff averaged across the study area according to the corresponding climate change scenarios. We then assess the hydrologic perturbations based on the comparison between present and future flow duration curves suggested by IMWI. As a result, the effect of hydrologic perturbation on aquatic ecosystems may be significant at several locations of the Nakdong river main stream in dry season.

대기/해양 접합 GCM을 이용한 지구 온난화의 추정 (Estimation of Global Warming by Coupled Atmosphere-Ocean GCM)

  • 김정우;박지업
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.14-19
    • /
    • 2000
  • A coupled general circulation model (GCM) of the global atmosphere, oceans and lands is used for finding the future climate at times of doubled carbon dioxide concentration (DCDC) of the atmosphere. Two runs of the model were made in order to find the future change. Global changes at times of DCDC may be characterized by a global warmig of $1.4^{\circ}C$, a $3\%$ global precipitation increase, and an increase in the surface available water (SAW) over the global land among others. The estimated increase in SAW over the land implies that river discharge is likely to increase with increased chance of severe weather as a result of the future global warming.

  • PDF

기후변화에 따른 작물 생산성반응과 기술적 대응 (Impact of climate variability and change on crop Productivity)

  • 신진철;이충근;윤영환;강양순
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2000년도 추계 학술대회지
    • /
    • pp.12-27
    • /
    • 2000
  • During the recent decades, he problem of climate variability and change has been in the forefront of scientific problems. The objective of this study was to assess the impact of climate variability on crop growth and yield. The growth duration was the main impact of climate variability on crop yield. Phyllochronterval was shortened in the global worming situations. A simple model to describe developmental traits was provided from heading data of directly seeded rice cultivars and temperature data. Daily mean development rate could be explained by the average temperature during the growth stage. Simple regression equation between daily mean development rate(x) and the average temperature(y) during the growth period as y = ax + b. It can be simply modified as x = 1/a $\ast$ (y-b). The parameters of the model could depict the thermo sensitivity of the cultivars. On the base of this model, the three doubled CO2 GCM scenarios were assessed. The average of these would suggest a decline in rice production of about 11% if we maintained the current cultivars. Future cultivar's developmental traits could be suggested by the two model parameters.

  • PDF