• 제목/요약/키워드: Glial Fibrillary Acidic Protein

검색결과 107건 처리시간 0.026초

Extramedullary tanycytic ependymoma of the lumbar spinal cord

  • Kim, Dong Ja;Han, Man-Hoon;Lee, SangHan
    • Journal of Yeungnam Medical Science
    • /
    • 제37권2호
    • /
    • pp.128-132
    • /
    • 2020
  • Tanycytic ependymoma is a rare variant of ependymoma that commonly affects the cervical and thoracic spinal cord. It usually arises as intramedullary lesions, and extramedullary cases are extremely rare. We report a case of a 44-year-old woman who was diagnosed with tanycytic ependymoma in her lumbar spine at level 2-3. The tumor mass developed in an intradural extramedullary location. Histopathologically, tanycytic ependymoma can be misdiagnosed as schwannoma or pilocytic astrocytoma. Immunohistochemical findings such as strong positivity for glial fibrillary acidic protein, perinuclear dot-like positive patterns for epithelial membrane antigen, and focal positivity for S100 protein are helpful in diagnosing tanycytic ependymoma. It is important to be aware of this rare tumor to ensure appropriate patient management and accurate prognosis.

삼령백출산(蔘笭白朮散)이 Alzheimer's Disease 동물모델의 Astrocyte 활성화 및 Apoptosis에 미치는 영향 (Effect of Samryungbaikchul-san on Astrocyte Activation and Apoptosis in Mouse Model of Alzheimer Disease)

  • 이상룡
    • 동의생리병리학회지
    • /
    • 제23권2호
    • /
    • pp.374-380
    • /
    • 2009
  • Samryungbaikchul-san(SRBCS) has been used in oriental medicine for the treatments of gastrointestinal and neurological disorders. Here, potential protective function of SRBCS was investigated in neural tissues in Alzheimer's disease(AD) mouse model. In primary cultured cells from the spinal cord of newborn rats, treatment of ${\beta}$-amyloid peptide elevated cell counts positive to glial fibrillary acidic protein(GFAP) or caspase 3 immunoreactivity, but the co-treatment of SRBCS reduced positive cell counts. In vivo administration of scopolamine, an inhibitor of muscarinic receptor, resulted in increases in the number of glial fibrillary acidic protein(GFAP) and caspase 3-positive cells in hippocampal subfields, which was then decreased by the treatment of SRBCS or acetylcholinesterase inhibitor galathamine. The present data suggest that SRBCS may play a protective role in damaged neural tissues caused by scopolamine treatments in mice.

Scolopendra Pharmacopuncture Ameliorates Behavioral Despair in Mice Stressed by Chronic Restraint

  • Choi, Yu-Jin;Lee, Hwa-Young;Kim, Yunna;Cho, Seung-Hun
    • 대한약침학회지
    • /
    • 제20권4호
    • /
    • pp.257-264
    • /
    • 2017
  • Introduction: Pharmacopuncture, which combines acupuncture with herbal medicine, is one of the newly developed acupuncture techniques that has recently been put into use. The possible mechanisms of scolopendra pharmacopuncture, as well as its potential effects on depressive symptoms, were investigated in this study by using a mouse model of chronic immobilization stress (CIS). Methods: C57BL/6 male mice were randomly assigned into three groups: mice not stressed with restraint and injected with distilled water, mice stressed with restraint and injected with distilled water, and mice stressed with restraint injected with scolopendra pharmacopuncture at a cervical site. Behavioral tests (an open field test, tail suspension test, and forced swimming test) were carried out after two weeks of CIS and injection treatments. The expression levels of glial fibrillary acidic protein (GFAP) in the hippocampus were determined by using western blot and immunohistochemistry analyses. Results: Mice exposed to CIS showed decreased behavioral activity, while scolopendra pharmacopuncture treatment significantly protected against the depressive-like behaviors induced by CIS. Moreover, scolopendra pharmacopuncture treatment increased GFAP protein levels in the hippocampi of the mice stressed by chronic immobilization. Conclusion: Scolopendra pharmacopuncture has an ameliorating effect on depressive behavior, which is partially mediated through protection against glial loss in the hippocampus.

흰쥐에서 척수 손상후 반응성 별아교세포에서의 CNTF 발현 증가 (Increased CNTF Expression in the Reactive Astrocyte Following Spinal Cord Injury in Rats)

  • 김창재;문세호;이병호;정미영;채준석;이문용;천명훈
    • The Korean Journal of Pain
    • /
    • 제11권2호
    • /
    • pp.182-193
    • /
    • 1998
  • Background: Ciliary neurotrophic factor (CNTF), identified as a survival factor for developing peripheral neurons is upregulated by reactive astrocytes in the traumatized tissue and in areas of terminal degeneration after a brain lesion. But in the spinal cord, CNTF is expressed in the non-astrocytic phenotypic, maybe oligodendrocytes. The present study was undertaken to determine the upregulation of CNTF expression in reactive astrocytes following spinal cord lesion in the rat. Methods: Unilateral incision of the dorsal funiculus at the thoracic level was performed and rats were sacrificed on days 3, 7, 14 and 28 postlesion. Western blot analysis, immunocytochemical analysis and double immunofluorescence for CNTF and glial fibrillary acidic protein (GFAP) were performed after spinal cord lesion. Results: A major band with 24 kDa and additional band of higher molecular weight form were detectable, and the intensity of the 24 kDa immunoreactive band increased up to 14 days postlesion and decreased toward laminectomized control values. CNTF immunoreactivity was markedly upregulated in the injured dorsal funiculus and adjacent gray matter. The time course of CNTF expression is coincident with the appearance of reactive astrocytes in the injured spinal cord. Moreover, double immunofluorescence for CNTF and glial fibrillary acidic protein (GFAP) revealed that CNTF immunoreactivity was in GFAP immunoreactive astrocytes. Conclusions: These results show that CNTF upregulation occurred in reactive astrocytes following spinal cord lesion, and suggest a role for CNTF in the regulation of astrocytic responses after spinal cord injury.

  • PDF

악성신경교 분화를 보이는 재발성 뇌실외 신경세포종 - 증례보고- (Recurrent Extraventricular Neurocytoma with Malignant Glial Differentiation - Case Report -)

  • 장인복;박세혁;황형식;김덕환;남은숙;조병문;신동익;오세문
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권4호
    • /
    • pp.522-527
    • /
    • 2001
  • 37세 남자 환자로 경련발작을 주소로 본원에 내원하였고, 조직검사상 뇌실외 신경세포종으로 진단 받았으며, 방사선 치료를 받고 퇴원하였다. 11년후 언어장애, 우측 편마비를 주소로 다시 내원 하였다. 뇌 전산화 단층촬영과 뇌 자기공명영상에서 좌측 두정엽과 측두엽에 종양 크기의 증가, 뇌부종 및 석회화가 동반된 소견을 보여 종양 절제술을 시행 받았다. 조직검사상에서 1987년 처음 입원 시에는 투명세포질을 가진 작은 원형세포와 원섬유가 풍부하고 가유두상 양상을 보이는 중심 신경세포종으로 진단되었다. 그러나, 1998년 두 번째 조직 검사상에서 대부분의 종양세포는 심한 이형성을 보이는 신경교세포로 구성되었으며, 유사분열, 다형성핵 등이 관찰되었고, 면역염색상 glial fibrillary acidic protein에서 양성을 보였다. 일부에서는 작고 둥근 세포들의 군집이 보였으며, synaptophysin에 양성을 보였다. 중심 신경세포종은 젊은 성인에서 호발하고 주로 측뇌실이나 제 3 뇌실의 몬로공 주위에서 발생하는 비교적 드문 종양으로, 신경교 분화를 보이는 경우는 있으나 악성분화를 보이는 경우와 뇌실외 발생은 드물다. 본 교실에서는 11년전 중심 신경세포 종으로 진단 받은 후 악성 신경교 분화를 보이는 뇌실외 신경세포종을 경험하였기에 보고한다.

  • PDF

박쥐 맨아래구역 띠뇌실막세포의 Glial Fibrillary Acidic Protein에 대한 면역조직화학 및 면역세포화학적 연구 (Immunohistochemical and Immunocytochemical Study about the Glial Fibrillary Acidic Protein in the Tanycytes of the Area Postrema of Bat)

  • 양영철;조병필;강호석
    • Applied Microscopy
    • /
    • 제30권4호
    • /
    • pp.377-387
    • /
    • 2000
  • 뇌실을 감싸는 뇌실막층은 대부분이 일반적인 뇌실막 세포로 이루어졌으나, 이들 세포 사이에 간혹 띠뇌실막 세포(tanycyte)가 분포하고 있다. 띠뇌실막세포는 일반적인 뇌실막세포와는 달리 뇌의 실질로 뻗은 매우 긴 기저돌기를 갖고 있다. 특히 제3뇌실의 뇌실막층에서 주로 연구된 띠뇌실막세포는 뇌실과 뇌실질의 혈관 혹은 신경세포와의 사이에 물질교환을 담당하는 것으로 추측되고 있으며, 띠뇌실막세포는 일반적인 뇌실막세포와는 달리 glial fibrillary acidic protein(GFAP)항체에 대해 양성반응을 보이는 것으로 알려져 있다. 본 연구는 면역조직화학 및 면역금표지법을 이용하여 박쥐 맨아래구역을 감싸는 뇌실막층에서 GFAP 항체에 대해 양성반응을 보이는 세포의 분포여부 및 이의 미세 구조를 확인하고자 시행하여 다음과 같은 결론을 얻었다. 세로 절단한 절편을 대상으로 GFAP 항체를 이용하여 면역염색한 후 광학현미경으로 확인한 결과 맨아래구역을 감싸는 뇌실막층에 GFAP 양성반응을 보이는 세포가 관찰되었으며, 특히 맨아래구역의 목부분에서 양성반응 세포가 많이 모여 있었다. GFAP양성반응을 보이는 세포들은 매우 긴 기저돌기를 갖고 있었으며, 기저돌기에서도 매우 강한 GFAP 양성반응을 보였다. 세포체에서는 주변부에서 양성반응을 보였다. 전자현미경하에서 맨아래구역 띠뇌실막세포는 주로 ependymal tanycytes였으며, 자유면에 소수의 미세융모 및 세포질돌기가 관찰되었으나, 섬모는 관찰되지 않았다. 기저부에 특징적으로 긴 기저돌기를 갖고 있었으며 이 돌기에는 중간세사 및 세로로 길게 달리는 사립체가 발달되어 있었고, 세포체와 돌기에 지방방울이 산재되어 있었다. 금입자를 표지한 GFAP항체를 사용하여 면역 염색한 후 전자현미경으로 관찰한 결과 세포체에서 핵을 둘러싸는 중간세사에서 금입자를 관찰할 수 있었으며, 나머지 핵을 비롯한 다른 세포소기관이나 세포질에서는 관찰되지 많았다. 또한 기저돌기에서도 중간세사에서만 금입자를 관찰할 수 있었다. 이와 같은 본 실험의 결과는 박쥐 맨아래구역 뇌실막층에도 띠뇌실막세포가 존재하고 있으며, 이 세포의 발달된 긴 기저돌기는 띠뇌실막세포가 일반적인 뇌실막세포와는 다른 기능을 동면동물인 박쥐의 맨아래구역에서도 수행하고 있음을 암시하고 있으나 이를 확인하기 위해서 더욱 자세한 연구가 필요한 것으로 사료된다.

  • PDF

Antidepressant effects of ginsenoside Rf on behavioral change in the glial degeneration model of depression by reversing glial loss

  • Kim, Yunna;Lee, Hwa-Young;Choi, Yu-Jin;Cho, Seung-Hun
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.603-610
    • /
    • 2020
  • Background: Depression is a common neuropsychiatric disease that shows astrocyte pathology. Ginsenoside Rf (G-Rf) is a saponin found in Panax ginseng which has been used to treat neuropsychiatric diseases. We aimed to investigate antidepressant properties of G-Rf when introduced into the L-alphaaminoadipic acid (L-AAA)-infused mice model which is representative of a major depressive disorder that features diminished astrocytes in the brain. Methods: L-AAA was infused into the prefrontal cortex (PFC) of mice to induce decrease of astrocytes. Mice were orally administered G-Rf (20 mg/kg) as well as vehicle only or imipramine (20 mg/kg) as controls. Depression-like behavior of mice was evaluated using forced swimming test (FST) and tail suspension test (TST). We observed recovery of astroglial impairment and increased proliferative cells in the PFC and its accompanied change in the hippocampus by Western blot and immunohistochemistry to assess the effect of G-Rf. Results: After injection of L-AAA into the PFC, mice showed increased immobility time in FST and TST and loss of astrocytes without significant neuronal change in the PFC. G-Rf-treated mice displayed significantly more decreased immobility time in FST and TST than did vehicle-treated mice, and their immobility time almost recovered to those of the sham mice and imipramine-treated mice. G-Rf upregulated glial fibrillary acidic protein (GFAP) expression and Ki-67 expression in the PFC reduced by L-AAA and also alleviated astroglial change in the hippocampus. Conclusion: G-Rf markedly reversed depression-like behavioral changes and exhibited protective effect against the astrocyte ablation in the PFC induced by L-AAA. These protective properties suggest that G-Rf might be a therapeutic agent for major depressive disorders.

A Role of Serum-Based Neuronal and Glial Markers as Potential Predictors for Distinguishing Severity and Related Outcomes in Traumatic Brain Injury

  • Lee, Jae Yoon;Lee, Cheol Young;Kim, Hong Rye;Lee, Chang-Hyun;Kim, Hyun Woo;Kim, Jong Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권2호
    • /
    • pp.93-100
    • /
    • 2015
  • Objective : Optimal treatment decision and estimation of the prognosis in traumatic brain injury (TBI) is currently based on demographic and clinical predictors. But sometimes, there are limitations in these factors. In this study, we analyzed three central nervous system biomarkers in TBI patients, will discuss the roles and clinical applications of biomarkers in TBI. Methods : From July on 2013 to August on 2014, a total of 45 patients were included. The serum was obtained at the time of hospital admission, and biomarkers were extracted with centrifugal process. It was analyzed for the level of S-100 beta (S100B), glial fibrillary acidic protein (GFAP), and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1). Results : This study included 33 males and 12 females with a mean age of 58.5 (19-84) years. TBI patients were classified into two groups. Group A was severe TBI with Glasgow Coma Scale (GCS) score 3-5 and Group B was mild TBI with GCS score 13-15. The median serum concentration of S100B, GFAP, and UCH-L1 in severe TBI were raised 5.1 fold, 5.5 fold, and 439.1 fold compared to mild injury, respectively. The serum levels of these markers correlated significantly with the injury severity and clinical outcome (p<0.001). Increased level of markers was strongly predicted poor outcomes. Conclusion : S100B, GFAP, and UCH-L1 serum level of were significantly increased in TBI according to severity and associated clinical outcomes. Biomarkers have potential utility as diagnostic, prognostic, and therapeutic adjuncts in the setting of TBI.

Malignant gliomas can be converted to non-proliferating glial cells by treatment with a combination of small molecules

  • Jinsoo Oh;Yongbo Kim;Daye Baek;Yoon Ha
    • Oncology Letters
    • /
    • 제41권1호
    • /
    • pp.361-368
    • /
    • 2019
  • Gliomas, the most highly malignant central nervous system tumors, are associated with an extremely poor patient survival rate. Given that gliomas are derived from mutations in glial precursor cells, a considerable number of them strongly react with glial precursor cell-specific markers. Thus, we investigated whether malignant gliomas can be converted to glial cells through the regulation of endogenous gene expression implicated in glial precursor cells. In the present study, we used three small-molecule compounds, [cyclic adenosine monophosphate (cAMP) enhancer, a mammalian target of rapamycin (mTOR) inhibitor, and a bromodomain and extra-terminal motif (BET) inhibitor] for glial reprogramming. Small-molecule-induced gliomas (SMiGs) were not only transformed into exhibiting a glial-specific morphology, but also showed positive reactions with glial-specific markers such as glial fibrillary acidic protein (GFAP), 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) and anti-oligodendrocyte (RIP). A microarray analysis indicated that SMiGs exhibited a marked increase in specific gene levels, whereas that of a malignant cancer-specific gene was greatly decreased. Moreover, proliferation of the cells was markedly suppressed after the conversion of malignant glioma cells into glial cells. Our findings confirmed that malignant gliomas can be reprogrammed to non-proliferating glial cells, using a combination of small molecules, and their proliferation can be regulated by their differentiation. We suggest that our small-molecule combination (with forskolin, rapamycin and I-BET151) may be the next generation of anticancer agents that act by reprogramming malignant gliomas to differentiate into glial cells.