• Title/Summary/Keyword: Glazing material

Search Result 53, Processing Time 0.032 seconds

Advanced Structural Silicone Glazing

  • Kimberlain, Jon;Carbary, Larry;Clift, Charles D.;Hutley, Peter
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.345-354
    • /
    • 2013
  • This paper presents an advanced engineering technique using finite element analysis to improve structural silicone glazing (SSG) design in high-performance curtain wall systems for building facade. High wind pressures often result in bulky SSG aluminum extrusion profile dimensions. Architectural desire for aesthetically slender curtain wall sight-lines and reduction in aluminum usage led to optimization of structural silicone bite geometry for improved stress distribution through use of finite element analysis of the hyperelastic silicone models. This advanced design technique compared to traditional SSG design highlights differences in stress distribution contours in the silicone sealant. Simplified structural engineering per the traditional SSG design method lacks accurate forecasting of material and stress optimization, as shown in the advanced analysis and design. Full scale physical specimens were tested to verify design capacity in addition to correlate physical test results with the theoretical simulation to provide confidence of the model. This design technique will introduce significant engineering advancement to the curtain wall industry and building facade.

Research on Improvement of Efficiency in Flat Plate Solar Collector by Using Double-Wall Glazing and VIP Insulation (이중투과체 및 VIP복합 단열재 적용 평판 집열기의 성능 향상에 대한 연구)

  • Lee, Doo Ho;Jang, Han Bin;Kim, Young Hak;Do, Kyu Hyung;Lee, Kwang Seob;Lyu, Nam Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.458-465
    • /
    • 2016
  • The purpose of this research is to improve the thermal effiency of solar collector and to quantitatively analyze its performance. Solar thermal systems have been limited to water heating systems mainly using low-temperature range. However, through diverse developments, the application has been extended to medium- and high-temperature fields such as solar heating, solar air conditioning, and solar thermal industrial process. Among the diverse research, this research is specially focusing on enhancement of the thermal performance by minimizing the heat loss coefficient of flat plate solar collectors. In order to do it, a front-side glazing material and a back-side insulation material with high insulated structure is proposed and based on computational analysis, the performance of energy collecting volume of the proposed solar collector is analyzed. The research shows that the proposed structure has the excellent performance at medium- and high-temperature range. therefore, it is expected that the proposed structure can easily replace existing technologies.

Evaluation on Grinding Force of Ceramic Grinding by the Diamond Wheel (다이아몬드 휠에 의한 세라믹 연삭의 연삭력 평가)

  • 문홍현;김성청;공재향;박병규;소의열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.43-47
    • /
    • 2002
  • In this study, through the experimental results of grinding ratio, grinding force and surface roughness with the obtained wear amount of diamond wheel and ceramic material during the grinding process, the following conclusions could be found. In the case of $Si_3N_4$, the wear of diamond wheel is large while the grinding force is stable and the range of change in surface roughness is small. for the case of $AL_2O_3$ and $ZrO_3$, while the wear of diamond wheel is getting smaller, the grinding force is increasing but the value of surface roughness is decreasing. For grinding with the vitrified bond wheel, it seems that the self-sharpening can be found for $Si_3N_4$ and the glazing effect of the cutting edge for $AL_2O_3$ and $ZrO_3$.

  • PDF

The Material Analysis and Conservation of Porcelain Enamel - Focus of Porcelain Enamel Excavated at Former President Yoon Bosun's Birthplace -

  • Lee, Jung-Min
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.33-40
    • /
    • 2019
  • During the conservation and maintenance of the birthplace center yard of President Asan Yoon Bosun, four porcelain enamel dishware were excavated from the central yard well. The glaze layer of excavated enamel was severely damaged; hence, the conservation process was done rapidly. In addition, scientific investigation and analysis were conducted to confirm the material properties of the glaze layer. It was confirmed that the outer surface was inverted and dried, while the inner surface was upright and fired during the glazing and drying process by measuring the film thickness. By examining the breakup phenomenon, the breaking up of the white enamel on the colored enamel was confirmed. This indicates that the colored glaze rose to the surface depending on the density of the colored glaze and white glaze. The investigation of the cross-section of the film confirmed that the lower layer formed according to the bonding properties with metal during the glazing process. Analysis of the constituents of the identified lower layer confirmed that there are differences between the specific components of the metal oxide of the lower layer and the surface color development of the upper layer.

Characterization of Ceramic Material Coating by Cobalt Sulfate Using Spray Technique

  • Kim, Myung-Je;Won, Il-An;Kim, Kyung-Nam
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.180-180
    • /
    • 2013
  • Ceramic glaze has been developed by numerous experiences and knowhow of potters for a long time. It has offered curiosity and beauty to many people with a variety of colors. This study first verifies the color difference according to clays and glazing used for the coloration experiment based on generation process and chemical reaction of cobalt sulfate, and determines the effect of a dilution ratio with water on changes in coloration concentration. The cobalt-aluminate spinel and the cobalt-silicate olivine are the strongest of the ceramic pigment, producing a very pure, navy blue color.

  • PDF

Sand particle-Induced deterioration of thermal barrier coatings on gas turbine blades

  • Murugan, Muthuvel;Ghoshal, Anindya;Walock, Michael J.;Barnett, Blake B.;Pepi, Marc S.;Kerner, Kevin A.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.37-52
    • /
    • 2017
  • Gas turbines operating in dusty or sandy environment polluted with micron-sized solid particles are highly prone to blade surface erosion damage in compressor stages and molten sand attack in the hot-sections of turbine stages. Commercial/Military fixed-wing aircraft engines and helicopter engines often have to operate over sandy terrains in the middle eastern countries or in volcanic zones; on the other hand gas turbines in marine applications are subjected to salt spray, while the coal-burning industrial power generation turbines are subjected to fly-ash. The presence of solid particles in the working fluid medium has an adverse effect on the durability of these engines as well as performance. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The focus of this research work is to simulate particle-surface kinetic interaction on typical turbomachinery material targets using non-linear dynamic impact analysis. The objective of this research is to understand the interfacial kinetic behaviors that can provide insights into the physics of particle interactions and to enable leap ahead technologies in material choices and to develop sand-phobic thermal barrier coatings for turbine blades. This paper outlines the research efforts at the U.S Army Research Laboratory to come up with novel turbine blade multifunctional protective coatings that are sand-phobic, sand impact wear resistant, as well as have very low thermal conductivity for improved performance of future gas turbine engines. The research scope includes development of protective coatings for both nickel-based super alloys and ceramic matrix composites.

A Study on the Mirror Surface Grinding for Brittle Materials with Inprocess E.D.M. Dressing (연속 방전드레싱에 의한 경취재료의 경면연삭에 관한 연구)

  • 김정두;이은상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.785-792
    • /
    • 1994
  • Ferrite is widely used in the material of magnetic head, but is difficult of grinding because of their brittleness and hardness. Therefore, diamond wheel with superabrasive is required for surface grinding of this brittle material. But the conventional dressing method can not apply to the diamond wheel with superabrasive. In this study describes a newly proposed method for carrying out effective inprocess dressing of diamond wheel with superabrasive. Using the IEDD the surface roughness of workpiece was improved and grinding force was very low. Resently IEDD is good method to obtain the efficiency grinding and surface grinding of brittle materials.

A Study on the Grinding Characteristics of Stainless Steel Using Intermittent Grinding Wheel (단속 연삭지석에 의한 스테인레스강의 연삭특성에 관한 연구)

  • Kweun, O-Byung;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2866-2874
    • /
    • 1996
  • In the grinding of difficult-to-materials, the major problmes of conventional grinding are grinding burn, wheel wear, grinding surface crack, loading and glazing, When a conventioanl grinding wheel is used, wheel wear and grinding surface crack easily occur in low heat conductive material and annealed steel. Intermittent grinding is suitable for diffcult-to-matrical such as stainless steel, titanium alloy, aluminum alloy and copper alloy. The purpose of this paper is to develop a new type intermittent wheel of the grinding system for improving the problem of stainless steel grinding, to observe the effect of intermittent grinding on surface quality and grinding characteristics of stainless steel grinding using intermittent grinding wheel. The characteristics of intermittent grinding system improve surface quality, low grinding temperature and low loading.

Study on Application and Economic Evaluation of New Insulation Material to Confront High Oil Price: Focus on an Apartment (고유가 대응을 위한 신단열재 적용과 경제성평가 연구 : 공동주택을 중심으로)

  • Hyun, Jong-Hun;Kim, Ji-Yeon;Park, Hyo-soon;Choi, Moo-Hyuck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.746-751
    • /
    • 2008
  • The best plan to reduce the building energy consumption is that the insulation performance should be improved because the insulation and airtight of building envelopes have an effect on the energy consumption basically. New insulation materials, which have the high performance and are above insulation standard, have been developed steadily. Because there are not studies on the building energy rating system and economic evaluation considering new insulation materials, these matters should be studied. In result alternatives, which applied 6 high performance material each, reduce the annual heating energy and raise the building energy rating. Applying the vacuum insulation material(Case 1, 2) and vacuum or triple glazing can retrieves the investment with $120 and $140$\sim$150 per barrel each.

Study on Estimate of Thermal Resistance of PVC Frame Window Due to Material Composition (PVC 창호의 구성에 따른 단열성능 예측에 관한 연구)

  • Sung, Uk-Joo;Lee, Jin-Sung;Cho, Soo;Jang, Cheol-Yong;Paek, Sang-Hun;Song, Kyoo-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1075-1080
    • /
    • 2006
  • Purpose of this study is proposal of estimating method about window thermal performance that based on KS F 2278 'Test method of thermal resistance for windows and doors' due to material composition of PVC frame window. First step of this study is research of present state about material composition of PVC frame window. Second is selection of main effective elements about window thermal resistance. For example, composition of Glazing, Frame area ratio of total window area, frame width, opening type, area of heat transfer and so on. Third is multiple regression analysis about thermal performance of PVC frame window due to main effective elements. It produces equations of multiple regression analysis due to opening type. Case of sliding window is $Y=0.149+0.034X_g+0.248X_{far}$, 4track sliding is $Y=0.584+0.175X_g+1.355X_{far}-0.008X_{fw}$, Tilt & Turn window is $Y=-0.161+0.076X_g+0.576X_{far}+0.0008X_{fw}$.

  • PDF