• Title/Summary/Keyword: Glassfiber

Search Result 20, Processing Time 0.028 seconds

Sound Absorbing Melamine Foam: A Strong Environmental Friendly Tendency Opposing Glass Fiber of Room Using in China

  • Yan, Xiang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.462-462
    • /
    • 2010
  • Glass fiber is widely used in architectural acoustics or building acoustics for sound absorption since it was introduced into China for about 50 years. But recent years, with people pay more attentions to the air cleansing and their health which may be affected by the tiny fiber of the glasswool, a voluntary tendency opposing glass fiber of room using is gradual appeared in China. This paper discusses both the main opinions towards the question whether there are harmful impacts on people health from glassfiber, and the application circumstance of it's applying in china. This paper focuses on another substitute sound absorbing material, melamine foam, to discuss the strong environmental friendly tendency opposing glass fiber of room using in China now.

  • PDF

Research of Plastic response by Quasi-Static Test for Circulr Hollow R.C. Bridge Pier (준정적 실험에 의한 중공원형 콘크리트 교각의 소성응답 연구)

  • 정영수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.247-255
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers circular hollow columns are widely used in Korean highway bridges Since the occurrence of 1995 Kobe earthquake there have been much concern about seismic design for various infrastructures inclusive of bridge structures. It is however understood that there are not much research works for nonlinear behavior circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is to investigate nonlinear behavior of hollow reinforced concrete bridge piers under the quasi-static cyclic load test and than to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It can be concluded from Quasi-static test for 7 bridge piers that approximate 4-5 ductility factor can be experimentally obtained for bridge piers nonseismically designed in conventional way which approximate 5-6 ductility factor for those seismically designed.

  • PDF

Effect of Sampling and Analytical Methods on the Fibrous Materials from the Ground Water (시료 채취 조건 및 검사방법에 따른 지하수내 섬유상 물질 검출 양상에 관한 연구)

  • Kim, Ji-Yong;Kim, Jung Ran;Cheong, Hae-Kwan;Lim, Hyun-Sul;Paik, Nam-Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.209-222
    • /
    • 1997
  • Authors surveyed the ground water near the waste disposed from a fiberglass production factory to confirm the presence of glassfiber in the water and to determine the effect of sampling conditions and storage on the recovery of fibrous materials in the ground water. Sample was collected at every 4 hours for 48 hours consecutively. After finishing the 48 hours sample, water sampling was done from each tap after repeated turning on and off the water for 30 seconds at each time. Sample was collected in the two 1.5 liter polyethylene bottle after vigorously shaking the bottle with the same water several times with the flowing tap water. At each paired sample, one bottle was stored stand still at room temperature, and the other sample was filtered immediately after sampling. Water was filtered on the Mixed Cellulose Ester filter with negative pressure. Each sample was divided into upper and lower layer. The other bottle was stored at room temperature standstill for 7 days and filtered in the same fashion as the other pair of sample did. Each MCE filter was divided into 4 pieces and one piece was treated with acetone to make it transparent. Each prepared sample was observed by two researchers under the light and polarizing microscopy, scanning electron microscopy and energy dispersive X-ra microanalysis. Fibers were classified by the morphology and polarizing pattern under the polarizing microscope, and count was done. 1. There was a significant fluctuation in number of the fibers, but there was no specific demonstrable pattern. 2. Non-polarizing fibers frequently disappeared after 7 days's storage. But cluster of fibers were found at the wall of the same container by scratching technique. 3. Polarizing fibers were usually found in between the filter and the manicure pasted area. Possible explanations for this phenomenon will be that either these fibers are very light or have electronic polarity. Hence, these fibers are not able to be attached on the surface of slide glass. 4. Under the scanning electron microscopic examination, the fibers which are not refractive under the light microscopy were identified as glassfiber. Other fibers which is refractive under the polarizing microscopy were identified as magnesium silicate fibers. It is strongly suggested that development of standardized method of sample collection and measurement of fibrous material in the water is needed.

  • PDF

Recycle of the Glass fiber Obtained from the Roving Cloth of FRP II: Study for the Physical Properties of fiber-reinforced Concrete (폐 FRP 선박의 로빙층에서 분리한 유리섬유의 재활용 II: 섬유강화 콘크리트의 물성에 관한 연구)

  • Kim, Yong-Seop;Lee, Seung-Hee;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.46-49
    • /
    • 2008
  • Recycling glass fiber, 'F-fiber,' was obtained by the separation of the roving layer from waste FRP and the concrete products or structures were considered for its application. Experiment was carried out for the bending strength of aggregate (2.45 of cement) by weight and F-fiber (density of 1.45, volume ratio to all of the aggregate and the cement). Whereas the specimen containing 1% F-fiber showed the bending strength 23% higher than that without F-fiber after curing far 28 days, the one with 0.5% F-fiber did not give any change. It could be found, therefore, that the minimum mixing amount should be larger than 0.5% fur the strength reinforcement. One of the reinforcing concrete product, bench flume, containing 1% F-fiber showed 21% increment of bending strength In contrast to that without F-fiber.

  • PDF

Development of Source Profiles for Asbestos and Non-asbestos Fibers by SEM/EDX (SEM/EDX를 이용한 석면 및 비석명의 오염원분류표 개발)

  • Choi, Young-A;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.718-726
    • /
    • 2007
  • There are many varieties of asbestos: chrysotile, crocidolite, amosite, tremolite, actinolite, and anthophylite. These are widely used in construction materials, brake lining, textile, and so on. Even though non-asbestos fibers such as glassfiber and rockwool have manufactured because asbestos causes asbestosis, lung cancer, mesothelioma, etc., some bad effects of non-asbestos have been also reported. PCM (phase contrast microscopy) and PLM (polarized light microscopy) have been used to qualitatively analyze asbestoses. These techniques have serious drawbacks when identifying and separating various asbestoses. Recently scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX) has been known as an useful tool to analyze airborne particle since it provides physical and chemical information simultaneously. The purpose of the study was to classify both asbestos and non-asbestos fibers and finally to develop their source profiles by using the SEM/EDX. The source profiles characterized by 6 different types of asbestos fibers and 2 types of non-asbestos fibers had been developed by analyzing a total of 380 fibers. Analytical parameters used in this study were length, width, aspect ratio, and shape as physical information, and Na, Mg, Al, Si, K, Ca, Cr, Mn, Fe, and Cu as chemical information. All the parameters were intensively reviewed.

A Study on the Fire Resistance of Korean Cellulose Insulation (국내 섬유질 단열재의 내화성능에 관한 연구)

  • Kwon, Young-Cheol;Hwang, Jung-Ha;Yu, Hyung-Kyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • The fire resistance of thermal insulation and interior finishing materials is recently much emphasized after the fire accident at the Icheon Cold Store in January 2008. Three kinds of thermal insulation are used in buildings. They are Organic, Non-organic and cellulosic insulation. Organic insulation such as polystyrene foam board and urethane foam has high thermal resistance but it has no fire resistance. While non-organic insulation such as rockwool and glassfiber has high fire resistance, it has lower thermal resistance than organic insulation. Cellulose insulation is primarily manufactured from recycled newsprint or cardboard using shredders and fiberizers. Despite of its environmental friendliness and high thermal resistivity, its domestic use has not much increased because of the prejudice that paper can easily burn. However, the cellulose insulation as a product is about 80 wt.% cellulosic fiber and 20 wt.% chemicals, most of which are fire retardants such as boric acid and ammonium sulfate. It is required to secure its fire safety for more consumption as a building insulation in Korea. Therefore, this study investigates the fire resistance of Korean cellulose insulation according to the rate of fire retardant and finally presents the optimum rate of fire retardant in cellulose as building insulation. The fire safety test was conducted according to the ASTM C 1485-00. The test results indicate that above 18 wt% of fire retardant is necessary to secure the fire safety of cellulose insulation.

Recycle of the Glass Fiber Obtained from the Roving Cloth of FRP I: Study for the Physical Properties of Fiber-reinforced Mortar (폐 FRP 선박의 로빙층에서 분리한 유리섬유의 재활용 I: 섬유강화 모르타르의 물성에 관한 연구)

  • Yoon, Koo-Young;Kim, Yong-Seop;Lee, Seung-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.102-106
    • /
    • 2007
  • While the effort has been made in recycling the FRP (Fiber Reinforced Plastic) used for the medium-to-small size ships, researchers try to find out the methods more favorable for the environments and more value-added. In respect to the fact that the FRP consists of two types of layers, roving and mat, differentiated by the 2-dimensional structure, our group was able to separate the layers of FRP instead of grinding it. The roving cloth was cut to the long glass fibers (about 50 mm long; calling it 'F-fiber' afterwards). F-fiber showed increasing tensile strength and chemical-resistance possibly due to the remained resin (about 25% by weight). In this experiment fiber-reinforced mortars are made of the F-fiber as a recycling method of FRP. The mortar containing 2% (v/v) F-fiber results in 34.6% increment of bending strength from the standard after 28 day curing. The resulting strength is similar to that of the mortar with imported polyvinyl fiber P-54. These results imply that F-fiber can be applied to the 'fiber reinforced mortar' and furthermore may be a substitute for the imported fibers.

  • PDF

Strength toss of F-Fiber Obtained from Recycling FRP Ship in a Basic Solution (폐 FRP 선박에서 분리하여 얻은 F섬유의 염기성 용액에서의 강도저하)

  • Lee, Seung-Hee;Kim, Yong-Seop;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.42-45
    • /
    • 2008
  • It has been reported that FRP (fiber reinforced plastic) can be recycled by separating into layers instead of crushing into powder. F-fiber obtained from roving layer separated from FRP, has bigger tensile strength than the bundle of glass fibers of which FRP was made (more than 90%). SEM image of F-fiber shows the presence of some resin. Under the proposition of usage of F-fiber in the concrete material, tensile strength is examined after soaking in a basic solution (NaOH+KOH). The reaction mechanism of strength loss may be considered as an attack of hydroxide ion ($OH^-$) on a chemical bond of Si-O-Si of glass fiber. The simulation graph of the strength loss data implies certain reaction mechanism. While in the early stage kinetically controlled reaction results in a fast drop of tensile strength, after 30 days dispersion rate of hydroxide ion plays a major role in strength loss. This result is similar to the one for the AR glass. An extrapolation of the graph would make an assumption about the lift time of F-fiber possible.

  • PDF

Performance Evaluation of Underground Pipe with In-Situ Recycled Controlled Low Strength Materials (현장발생토사 재활용 유동성채움재를 이용한 지하매설관의 거동평가)

  • Lee Kwan-Ho;Song Chang-Seob
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.1-12
    • /
    • 2006
  • An existing Steel pipe, Cast iron pipe and Concrete pipe is can not escaped from aging, specially Metal tube is causing many problems that the quality of water worse is concerned about many rust and mike efficient use of preservation of water. The use of Glassfiber Reinforced Plastic Pipe(GRP PIPE) should be one of the possible scheme to get over these problems. The GRP PIPE has an excellent resistance power and the life is lasting from 50 to 100 years roughly. It's to be useful as a result of high durability and a good construction work also it is a light weight therefore can be expected to short the time of construction and man power. In this research, to executed the small-scaled model test, in-situ model test using CLSM of in-situ soil and to evaluated the stress - strain of the pipe also try to estimated how useful is. From the model test in laboratory, the vertical and horizontal deformation of the GRP PIPE measured in six instance using 200mm and 300mm in diameters. The value of experimentation, theory, analysis got the same results of the test, but the vertical and horizontal deformation gauged in small and the earth pressure was almost zero using CLSM of in-situ soil..

  • PDF

Quasi-Static Test for Seismic Performance of Circular Hollow RC Bridge Pier (원형 중공 콘크리트 교각의 내진성능에 대한 준정적 실험)

  • 정영수;한기훈;이강균;이대형
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.41-54
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers, circular hollow columns are widely used in Korean highway bridges. Since the occurrence of 1995 Kobe earthquake, there have been much concerns about seismic design for various infrastructures, inclusive of bridge structures. It is, however, understood that there are not much research works for nonlinear behavior of circular hollow columns subjected to eqrthquake motions. The objective of this experimental research is to investigate nonlinear behavior of circular hollow reinforced concrete bridge piers under the quasi-static cyclic load, and then to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. Particularly for this test, constant 10 cyclic loads have been repeatedly actuated to investigate the magnitude of strength degradation for the displacement ductility factor. Important test parameters are seismic design, confinement steel ratio, axial force and load pattern. It is observed from quasi-static tests for 7 bridge piers that the seismically designed columns and the retrofitted columns show better performance than the nonseismically designed colums, i.e. about 20% higher for energy dissipation capacity and about 70% higher for curvatures.

  • PDF