• Title/Summary/Keyword: Glass-ceramics

Search Result 514, Processing Time 0.034 seconds

Crystallization and conductivity of CuO--$P_{2}O_{5}$-$Nb_{2}O_{5}$-$V_{2}O_{5}$Glasses for Solid State Eletrolyte (고체전해질용 CuO-$P_{2}O_{5}$-$Nb_{2}O_{5}$-$V_{2}O_{5}$계 유리의 결정화와 전기전도도)

  • 손명모;이헌수;김종욱;김윤선;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.475-480
    • /
    • 2001
  • Glasses in he system CuO-P$_2$O$_{5}$ -Nb$_2$O$_{5}$ -Nb$_2$O$_{5}$ -V$_2$O$_{5}$ were prepared by a press-quenching method on the copper plate. the glass-ceramics from these glasses were obtained by post-heat treatment, and the crystallization behavior and DC conductivities were determined. The conductivities of the glasses were range from 10$^{-6}$ s.$cm^{-1}$ / at room temperature ,but the conductivities of the glass-ceramics were 10$^{-3}$ s.$cm^{-1}$ / increased by 10$^3$ order. The crystalline product in the glass-ceramics was CuV$_2$O$_{6}$ . the crystal growth of CuV$_2$O$_{6}$ phase increased with heat-treatment conditions. The linear relationship between il($\sigma$T) and T$^{-1}$ suggested that the electrical conduction in the present glass-ceramics would be due to a small polaron hopping(SPH) mechanism.

  • PDF

Study on Biaxial Flexural Strength by Glass-infiltration of Zirconia Ceramics (지르코니아 세라믹의 Glass-infiltration에 의한 2축 굽힘강도에 관한 연구)

  • Joo, Kyu-Ji;Jung, Jong-Hyun;Song, Kyung-Woo
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • This study was to evaluate the biaxial flexural strength of zirconia ceramics after glass-infiltration on zirconia core. The zirconia specimens were made with diameter-15mm, thickness-0.6mm using zirconia block which divided into 1) sintered group, 2) heat - treated group, 3) Glass - infiltrated group and experimented fracture strength by each 10 specimens in experimental group. The biaxial flexural test was performed at crosshead speed of 0.1${\beta}\;{\AE}$ min. The experiment result average fracture strength was shown 541.0${\beta}\acute{A}$ in sintered group and glass-infiltrated group as 662.2${\beta}\acute{A}$ river of 22.4% rise appear. Weibull coefficient sintered group is 3.462 and glass-infiltrated group improved believability about fracture strength from melting permeation processing of glass by 4.716.

  • PDF

Setting and Hydroxyapatite Formation of Bioactive Glass Bone Cement (생체활성 유리 골 시멘트의 응결 및 수산화 아파타이트 형성)

  • Lim, Hyoung-Bong;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.770-776
    • /
    • 2005
  • Hardening and hydroxyapatite(HAp) formation behavior of the bioactive cements in the system of $CaO-SiO_{2}-P_{2}O_{5}$ glasses and the corresponding glass-ceramics were studied. DCPD (Dicalcium Phosphate Dihydrate: $CaHPO_4{\cdot}2H_2O$) and DCPA (Dicalcium Phosphate Anhydrous: $CaHPO_4$) were developed when the prepared glass and glass-ceramic powders were mixed with three different solutions. The DCPD and DCPA transformed to HAp when the cement was soaked in Simulated Body Fluid (SBF), and this HAp formation strongly depended on the releasing capacity of $Ca^{2+}$ ions from the cements. The glass-ceramic containing apatite showed fast setting, but no HAp formation was observed because no $Ca^{2+}$ ions were released from this glass-ceramics. The compressive strength of the cements increased with reaction time in SBF until all DCPD and DCPA transformed to HAp.

Dielectric Relaxation Properties of KNN-BT Ceramics with (Ba,Ca)SiO3 Glass Frit ((Ba,Ca)SiO3 Glass Frit 첨가에 따른 NKN-BT 세라믹스의 유전 완화 특성)

  • Bae, Seon Gi;Shin, Hyeo-Kyung;Lee, Seung-Hwan;Im, In-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.367-371
    • /
    • 2014
  • We investigated dielectric relaxation properties of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics by addition (0~0.3 wt%) of $(Ba,Ca)SiO_3$ glass frit. All composition of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ added $(Ba,Ca)SiO_3$ glass frit showed the same crystallographic properties, coexistence of orthorhombic and tetragonal phase. By increasing addition of $(Ba,Ca)SiO_3$ glass frit, the Curie temperatures of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics were decreased, whereas maximum dielectric constants of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics were dramatically increased. Especially the deviations of Curie temperature $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics were increased by increasing amount of $(Ba,Ca)SiO_3$ glass frit, and it indicated that $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics added $(Ba,Ca)SiO_3$ glass frit have relaxor characteristics.

Thermal properties of glass-ceramics made with zircon and diopside powders

  • Lee, Dayoung;Kang, Seunggu
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.504-508
    • /
    • 2018
  • Diopside is a ceramic material with excellent physical and chemical properties. However, when it is applied as an LED packaging material, heat dissipation of the LED element is not sufficient due to its relatively lower thermal conductivity, which may cause degradation of the LED function. In this study, glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system, in which diopside is the main crystal phase, were prepared by heat-treating the glass, which was composed of zircon ($ZrO_2-SiO_2$) powders and diopside ($CaO-MgO-2SiO_2$) powders. The possibility of using the glass-ceramics as a packaging material for LEDs was then investigated by analyzing the density, shrinkage, thermal conductivity, and phases generated according to the amount of zircon powder added. The density and shrinkage of specimens decreased slightly and then increased again with the amount of $ZrO_2-SiO_2$ added within a range of 0~0.38 mol. Even though the crystal phase of zircon does not appear in the $ZrO_2-CaO-MgO-SiO_2$ system, the glass containing 0.38 mol zircon powder showed the highest thermal conductivity, 1.85 W/mK, among the specimens fabricated in this study: this value was about 23% higher than that of pure diopside. It was found that the thermal conductivity of the glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system was closely related to the density, but not to the phase type. Zirconia ($ZrO_2$), a component oxide of zircon, plays an important role in increasing the density of the specimen. Furthermore the thermal conductivity of glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system showed a nearly linear relationship with thermal diffusivity.

Micro-Crack Healing on Soda-Lime Glass by Chemical Strengthening

  • Kim, Hyeong-Jun;Lee, Sung-Min;Maeng, Jeehun;Kim, Dong-hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.483-488
    • /
    • 2019
  • We studied whether chemical strengthening can heal the flaws on soda-lime silicate glass. Artificial surface cracks were introduced on the glass by sharp indentation with various loads of 0.1 to 10 N. Then, the glasses with flaws were treated by ion-exchanging in KNO3 melt. The change in the dimension of the crack on glass was measured by a digital microscope and a scanning electron microscope. The chemical strengthening treatment enhances the strength of the glass with flaws. It is thought that the melted KNO3 not only forms the depth of the compressed layer of 7.5 ㎛, but also heals the cracks by infiltrating them and expanding the glass on both sides of the cracks. The critical length (2c) of the cracks on soda-lime glass that can be healed by chemical strengthening is 50 ㎛ or less.

Electrochemical properties of $Li_2O-P_2O_5-V_2O_5$ Glass-ceramics by Addition of $Bi_2O_3$ ($Bi_2O_3$첨가에 따른 $Li_2O-P_2O_5-V_2O_5$ 결정화유리의 전기화학적 특성변화)

  • Son, Muong-Mo;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.797-800
    • /
    • 2002
  • Instead of a solution process producing amorphous $LiV_3O_8$ form, we prepared Lithium vanadate glass by melting $Li_2O-P_2O_5-V_2O_5$ and $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$ composition in pt. crucible and by quenching on the copper plate. From the crystallization of $Li_2O-P_2O_5-V_2O_5$ and $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$, we could abtain glass-ceramics having crystal phase, LiV3O8 from glass matrix. The material heat-treated at lower-temperature, $250^{\circ}C$ had less crystalline and lower capacity, But the material heat-treadted at higher-temperature, $330^{\circ}C$ had higher capacity and $Li_2O-P_2O_5-V_2O_5$ glass-ceramics had higher capacity than $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$ glass-ceramics.

  • PDF

MECHANICAL PROPERTIES OF REUSED LITHIUM DISILICATE GLASS-CERAMIC OF IPS EMPRESS 2 SYSTEM

  • Oh Sang-Chun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.6
    • /
    • pp.572-576
    • /
    • 2002
  • This investigation was designed to estimate the biaxial flexure strength and fracture toughness of lithium disilicate glass-ceramics of IPS Empress 2 system pressed with as-received ingots and their sprue buttons. Two groups of the lithium disilicate glass-ceramics were prepared as follows: group 1 is ingot-pressed group; group 2 is sprue button-pressed group. A ball-on-three-ball test was used to determine biaxial flexure strength (BFS) of disks in wet environment. Scanning electron microscopy(SEM) analysis was conducted to observe the microstructure of the ceramics. Unpaired t-test showed that there were no differences in the mean biaxial Hem strength (BFS) and KIC values between group 1 and 2 (p > 0.05). Two groups showed similar values in the KIC and the strength at 5% failure probability. The SEM micrographs of the IPS Empress 2 glass-ceramic showed a closely packed, multi-directionally interlocking pattern of numerous lithium disilicate crystals protruding from the glass matrix. The lithium orthophosphate crystals could not be observed on the fracture surface etched. There was no a marked difference of the microstructure between group 1 and 2. Although there were no tests including color stability, casting accuracy, etc., the results of this study implied that we could reuse the sprue button of the pressed lithium disilicate glass-ceramic of IPS Empress 2 system.

Ultra-Precise Polishing of Mica Glass Ceramics Using MR Fluids and Nano Abrasives (MR fluid를 이용한 Mica Glass Ceramics의 초정밀 연마)

  • Beak, Si-Young;Song, Ki-Hyeok;Kim, Ki-Beom;Kim, Byung-Chan;Kang, Dong-Sung;Hong, Kwang-Pyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.85-90
    • /
    • 2017
  • Mica-glass ceramics has features such as micro-sized crystals, high strength, chemical resistance, semitransparent optical properties, etc. Due to its superior material properties, mica glass ceramics have increasing applications in dental and medical components, insulation boards, chemical devices, etc. In many applications, especially for dental and medical components, ultra-precise polishing is required. However, it is known to be a very difficult-to-grind material because of its high hardness and brittle properties. Thus, in this study, a newly developed ultra-precise polishing method is applied to obtain nano-level surface roughness of the mica glass ceramics using magnetorheological (MR) fluids and nano abrasives. Nano-sized ceria particles were used for the polishing of the mica glass ceramics. A series of experiments were performed under various polishing conditions, and the results were analyzed. A very fine surface roughness of Ra=6.127 nm could be obtained.