• Title/Summary/Keyword: Glass transition temperature ($T_g$)

Search Result 218, Processing Time 0.028 seconds

Influence of SBR Type and Blend Ratio on Dynamic Mechanical Properties of SBR/SBR Biblend Composites

  • Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.17-21
    • /
    • 2024
  • Solution styrene-butadiene rubber (S-SBR) is used to improve the wet grip and rolling resistance properties of tire treads. As blending of SBRs can improve the physical properties of tire treads, we investigated the effects of SBR type and blending ratio on the physical properties. Twelve SBR/SBR biblend composites were prepared using four SBRs with different microstructures. The glass transition temperature (Tg), tanδ at 0℃ (wet grip predictor), and tanδ at 60℃ (rolling resistance predictor) were obtained from dynamic mechanical analysis, and were compared to the expected values obtained from the results of single SBR samples. Most of the SBR/SBR biblend composites exhibited crosslink densities lower than the expected values. The tanδ values at 0℃ and 60℃ of the SBR/SBR blend composites deviated from the expected values, with many of the deviations being disadvantageous. Of the twelve composites, six samples had higher 0℃ tanδ values than the corresponding expected values, and four exhibited superior wet grip properties to those of the SBR single samples. In addition, two of the twelve samples exhibited improved rolling resistance properties as compared with the single SBR samples. Finally, four samples exhibited lower Tg values than expected, and the Tg of one composite was lower than those of the single SBR samples.

Effect of Modified Starches on Caking Inhibition in Ramen Soup

  • Wee, Hye-Won;Choi, Young-Jin;Chung, Myong-Soo
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.646-649
    • /
    • 2007
  • The effect of the addition of 2 kinds of chemically modified starches (the anti-caking agents; tapioca starch and com starch) on caking of ramen soup was observed using a low-resolution proton-pulsed nuclear magnetic resonance (NMR) technique. After storing ramen soup samples with diverse compositions of modified starch at 20-40% relative humidity for 4 weeks, changes in the spin-spin relaxation time constant ($T_2$) were measured as a function of temperature. $T_2-Temperature$ curves for ramen soup containing modified starches showed that the caking initiation temperature (glass transition temperature) was increased by $5^{\circ}C$ following the addition of only 0.5% modified cornstarch. The results indicate that the modified com starch used in this study would be an effective anti-caking agent for ramen soup, thus prolonging the shelf life of the product.

The Properties of Optical Glass of B2O3-SiO2-La2O3 System with Li2O (Li2O가 포함된 B2O3-SiO2-La2O3계 광학 유리 특성)

  • Ji-Sun Lee;Sae-Hoon Kim;Jinho Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.560-564
    • /
    • 2022
  • In this study, lanthanum boron silicate glasses were prepared with a composition of x Li2O-(60-x)B2O3-5CaO-5BaO-7ZnO-10SiO2-10La2O3-3Y2O3 where x = 1,3,5,7, and 9 mol%. Each composition was melted in a platinum crucible under atmospheric conditions at 1,400 ℃ for 2 h. Clear glasses with a transmittance exceeding 85 % were fabricated. Their optical, thermal, and physical properties, such as refractive index, Abbe number, density, glass transition (Tg) and Knoop hardness were studied. The results demonstrated that refractive index was between 1.6859 and 1.6953 at 589.3 nm. The Abbe number was calculated using an equation for 589.3 nm (nd), 656.3 nm (nf) and 486.1 nm (nc) and was observed to be in the range from 57.5 to 62.6. As the Li2O content increased, the glass transition temperature of the optical glass decreased from 608 ℃ to 564 ℃. If glass mold pressing is performed using a material with a low transition temperature and high mechanical strength, then the optical glasses developed in this study can be completely commercialized.

Synthesis and Cure Behaviors of Diglycidylether of Bisphenol-S Epoxy Resins (Diglycidylether of Bisphenol-S 에폭시 수지의 합성 및 경화거동에 관한 연구)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.501-507
    • /
    • 2002
  • In this work, diglycidylether of bisphenol-S (DGEBS) epoxy resin was prepared by alkaline condensation of bisphenol-S (BPS) with epichlorohydrin (ECH) in the presence of NaOH catalyst. The structure of the synthesized DGEBS epoxy resin was confirmed by IR, NMR spectra, and elemental analysis. The curing reaction and glass transition temperature ($T_g$) of DGEBS epoxy resin cured with phthalic anhydride (PA) and tetrahydrophthalic anhydride (THPA) at curing agents were studied by dynamic differential scanning calorimetry (DSC). The thermal stability of the cured specimen was investigated by thermogravimetric analysis (TGA). As a result, the activation energy ($E_a$) of DGEBS/PA system was higher than that of DGEBS/THPA system, whereas $T_g$, initial decomposed temperature (IDT), and decomposition activation energy ($E_t$) of DGEBS/PA were lower than those of DGEBS/THPA. This was probably due to the fact that the crosslinking density of DGEBS/THPA was increased by ring strain of curing agent.

Effect of molecular and crystalline structure on phase transition behaviors of rice starches (쌀전분의 분자 및 결정구조가 상전이에 미치는 영향)

  • Jeong, Duyun;Lee, Su-Jin;Chung, Hyun-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.432-437
    • /
    • 2019
  • The objective of this study was to determine the molecular/crystalline structures and phase transition properties of starches isolated from six rice cultivars grown in Korea. Apparent amylose content was highest in starch obtained from the Saemimyeon cultivar (30.8%) and lowest in that obtained from the Sheonhyangheukmi cultivar (20.3%). Starch from the Saemimyeon cultivar had a lower proportion of short chains (DP 6-12) and a the higher proportion of long chains (DP${\geq}37$) than that seen in other rice starches. Saemimyeon had relatively higher pasting temperature ($86.5^{\circ}C$), gelatinization temperature ($72.1^{\circ}C$) and gelatinization enthalpy (14.2 J/g) than these values found for other rice starches. The onset temperature and enthalpy for ice crystallization of rice starch ranged from $-27.1{\sim}-20.2^{\circ}C$ and 241.1~264.8 J/g, respectively. The ice melting enthalpy measured in excess water (67% water content) of rice starches was 282.4~310.1 J/g. Among the rice starches examined, starch obtained from Sheonhyangheukmi, with the lowest amylose content, showed the lowest glass transition temperature (${T_g}^{\prime}$).

Crystallization of Borosilicate Glass with the Addition of $ZrO_2$ (지르코니아 첨가된 보로실리케이트 유리의 결정화)

  • Shim, Gyu-In;Kim, Young-Hwan;Lim, Jae-Min;Choi, Se-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1127-1132
    • /
    • 2010
  • Borosilicate glass was prepared in the composition of 81% $SiO_2$, 4% $Na_2O$, 2% $Al_2O_3$, 13% $B_2O_3$. The albite phase($NaAlSi_3O_8$) increased with the $ZrO_2$(0~10wt.%) addition. For measurement of glass transition temperature($T_g$), crystallization temperature($T_{c,max}$) measured by differential thermal analysis. The $T_g$ and $T_{c,max}$ were $510{\sim}530^{\circ}C$ $650{\sim}670^{\circ}C$, respectively. The crystallized glass was heated at various conditions(temperature, time). After nucleation at $550^{\circ}C$ for 2hours prior to crystal growth at $650^{\circ}C$ for 4hours, the resulting Vickers hardness, fracture toughness and bending strength were about $736H_v$, $1.0779MPa{\cdot}m^{1/2}$, and 493MPa, which were 17%, 45% and 149% higher than parent borosilicate glass, respectively. Crystal size and transmittance of crystallized borosilicate glass were analyzed by FE-SEM, EDX and UV-VIS-NIR spectrophotometer. Transmittance of crystallized borosilicate glass was decreased with increasing $ZrO_2$(wt%) at visible-range. The results prove that light-weight bulletproof can be fabricated by the crystallization of borosilicate glass.

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.

Effect of Process Parameters and Kraft Lignin Additive on The Mechanical Properties of Miscanthus Pellets

  • Min, Chang Ha;Um, Byung Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.703-719
    • /
    • 2017
  • Miscanthus had a higher lignin content (19.5 wt%) and carbohydrate (67.6 wt%) than other herbaceous crops, resulting in higher pellet strength and positive effect on combustion. However, miscanthus also contains a high amount of hydrophobic waxes on its outer surface, cuticula, which limits the pellet quality. The glass transition of lignin and cuticula were related to forming inter-particle bonding, which determined mechanical properties of pellet. To determine the effects of surface waxes, both on the pelletizing process and the pellet strength were compared with raw and extracted samples through solvent extraction. In addition, to clarify the relationship between pellet process parameters and bonding mechanisms, the particle size and temperature are varied while maintaining the moisture content of the materials and the die pressure at constant values. Furthermore, kraft lignin was employed to determine the effect of kraft lignin as an additive in the pellets. As results, the removal of cuticula through ethanol extractions improved the mechanical properties of the pellet by the formation of strong inter-particle interactions. Interestingly, the presence of lignin in miscanthus improves its mechanical properties and decreases friction against the inner die at temperatures above the glass transition temperature ($T_g$) of lignin. Consequently, it could found that the use of kraft lignin as an additive in pellet reduced friction in the inner die upon reaching its glass transition temperature.

Preparation of Novel Quaternary Plastomers with Extremely Low Glass Transition Temperature

  • Kim, Jin Hoon;Kim, Jung Soo;Kim, Min Seong;Kim, Ki Bum;Yang, Hong Joo;Ha, Sung Chul;Chang, Young-Wook;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.188-194
    • /
    • 2016
  • In this study, novel quaternary plastomers consisting of ethylene, 1-hexene, high ${\alpha}$-olefin, and divinylbenzene were prepared using Zr metallocene catalyst, borate type cocatalyst, and tri-isobutylaluminium. The molar ratio changes of 1-hexene and high ${\alpha}$-olefin (1-octene, 1-decene, and 1-dodecene) had an effect on the properties of the quaternary plastomers. The structure of the quaternary plastomers was characterized using $^1H$ NMR. Molecular weight properties, crystallinity, and thermal properties of the plastomers were determined by GPC, WAXS, and DMA, respectively. Compared with the terpolymers prepared in our previous study, molecular weight and molecular weight distribution of the quaternary polymers were very similar, whereas glass transition temperature ($T_g$) was very low. Also, hardness and tensile properties of the quaternary plastomers were measured.

Solubility of Methane in Poly(n-Butyl Methacrylate) at Elevated Pressures (Poly(n-Butyl Methacrylate)에 의한 메탄가스의 용해도)

  • ;;;Stern, S. A.
    • Membrane Journal
    • /
    • v.2 no.2
    • /
    • pp.129-134
    • /
    • 1992
  • The solubility of methane in poly(n-butyl methacrylate)(PnBMA) was determined at pressures up to 35 atm. These measurements were made by volumetric technique in the temperature range from -10 to 30$^{\circ}$C. The solubility was found to be a nonlinear function of the applied pressure and could be satisfactorily described by dual-mode sorption model at temperatures below the glass txansition temperature($T_g$) of the polymer. The Langmuir capacity constant decreased with increasing temperature and vanished near the glass transition temperature of PnBMA. The solubility isotherm became linear at temperatures above the glass transition temperature of PnBMA. The temperature dependence of the dual-mode sorption parameters was also discussed.

  • PDF