• Title/Summary/Keyword: Glass sidewall

Search Result 8, Processing Time 0.025 seconds

Fabrication of a Bottom Electrode for a Nano-scale Beam Resonator Using Backside Exposure with a Self-aligned Metal Mask

  • Lee, Yong-Seok;Jang, Yun-Ho;Bang, Yong-Seung;Kim, Jung-Mu;Kim, Jong-Man;Kim, Yong-Kweon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.546-551
    • /
    • 2009
  • In this paper, we describe a self-aligned fabrication method for a nano-patterned bottom electrode using flood exposure from the backside. Misalignments between layers could cause the final devices to fail after the fabrication of the nano-scale bottom electrodes. A self-alignment was exploited to embed the bottom electrode inside the glass substrate. Aluminum patterns act as a dry etching mask to fabricate glass trenches as well as a self-aligned photomask during the flood exposure from the backside. The patterned photoresist (PR) has a negative sidewall slope using the flood exposure. The sidewall slopes of the glass trench and the patterned PR were $54.00^{\circ}$ and $63.47^{\circ}$, respectively. The negative sidewall enables an embedment of a gold layer inside $0.7{\mu}m$ wide glass trenches. Gold residues on the trench edges were removed by the additional flood exposure with wet etching. The sidewall slopes of the patterned PR are related to the slopes of the glass trenches. Nano-scale bottom electrodes inside the glass trenches will be used in beam resonators operating at high resonant frequencies.

A Study on the Fluorine Effect of Direct Contact Process in High-Doped Boron Phosphorus Silicate Glass (BPSG)

  • Kim, Hyung-Joon;Choi, Pyungho;Kim, Kwangsoo;Choi, Byoungdeog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.662-667
    • /
    • 2013
  • The effect of fluorine ions, which can be reacted with boron in high-doped BPSG, is investigated on the contact sidewall wiggling profile in semiconductor process. In the semiconductor device, there are many contacts on $p^+/n^+$ source and drain region. However these types of wiggling profile is only observed at the $n^+$ contact region. As a result, we find that the type of plug implantation dopant can affect the sidewall wiggling profile of contact. By optimizing the proper fluorine gas flow rate, both the straight sidewall profile and the desired electrical characteristics can be obtained. In this paper, we propose a fundamental approach to improve the contact sidewall wiggling profile phenomena, which mostly appear in high-doped BPSG on next-generation DRAM products.

Transparent Plasma Display using Transparent Glass Barrier Ribs

  • Lee, Sung-Min;Kim, Seung-Hun;Oh, Seung-Hwa;Shin, Bhum-Jae;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.339-341
    • /
    • 2009
  • A transparent plasma display was developed using transparent glass barrier ribs. Glass barrier ribs were fabricated via a wet etching process. Glass barrier ribs created using a top and bottom etching process showed better transparency compared to those created through only a top etching process. A see-through phosphor layer was obtained by coating the sidewall of the barrier ribs with a conventional opaque phosphor. A fabricated prototype of a transparent plasma display was clear enough to see the background beyond the panel and was well operated by a conventional driving scheme. The maximum luminance was 1150 cd/$m^2$ and the maximum luminous efficacy was 1.35 lm/W in a Ne+13.5%Xe gas-mixture and green cells.

  • PDF

Etching Characteristics of Er-doped Sodium Borosilicate Glass Film Fabricated by Aerosol Flame Deposition Method (Aerosol Flame Deposition 법에 의해 제조된 Er 첨가 Soldium Borosilicate 유리박막의 식각 특성에 관한 연구)

  • 박강희;정형곤;이정우;이형종;박현수;문종하
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.946-953
    • /
    • 1999
  • The etching characteristics of Er-doped sodium borosilicate glass film for the planar optical waveguides were investigated using reactive ion etching. The etch rate decreased as the pressure in creased but increased as the RF power increased. The etch rate increased as the flow rate C2F gas and the amount of O2 addition increased but decreased over critical point (C2F6 7,5 accm O2 20%) The etch rate was 180${\AA}$/min under C2F6 7.5 sccm O2 20% RF power 270 W, pressure 150 mTorr. With this optimum etching condition and subsequent heat treatment at 975$^{\circ}C$ for 30 minutes planar optical waveguides having improved sidewall roughness were fabricated successfully.

  • PDF

Characteristics of Micro Groove grinding for the Mold of PDP Barrier Ribs (PDP 격벽용 금형의 마이크로 홈 연삭 특성)

  • 조인호;정상철;박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.963-966
    • /
    • 2000
  • Plasma display panel (PDP) is a type of flat panel display utilizing the light emission that is produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalk from adjacent sub-pixels. Mold for forming barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing process such as screen printing, sand-blasting and photosensitive glass methods. Mold for PDP barrier ribs have stripes of micro grooves transferring stripes of glass-material wall. In this paper. Stripes of grooves of which width 48 um, depth 124um, pitch 274um was acquired by machining the material of WC with dicing saw blade. Maximum roughness of the bottom and sidewall of the grooves was respectively 120 nm, 287 nm. Maximum tilt angle caused by difference between upper-most width and lower-most width was 2$^{\circ}$. Maximum Radius of curvature of bottom was 7.75 ${\mu}{\textrm}{m}$. This results meets the specification for barrier ribs of 50 inch XGA PDP. Forming the glass paste will be followed by using mold in the near future.

  • PDF

Analysis on Thermal Environment in the Rotunda of New National Museum of Korea (새 국립중앙박물관 로튠다에서의 열환경 분석)

  • 이승철;조영진;김두성;이재헌;김홍범
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • Thermal comfort in the Rotunda which is high wide visiting space of the new national museum of Korea has been numerically investigated in this paper. To evaluate thor-mal comfort of the Rotunda, well-known indices, PMV and PPD were introduced. The results of present investigation show that thermal comfort is satisfied at the breathing zone of the visiting space. However a thermal stratification with $9^{\circ}C$ of temperature difference occurs along the height of the Rotunda which makes the thermal environment worse. For example, the PPD value reaches up to 50% in the 6th floor connection passage. Consequently, additional HVAC design factors should be considered in order to reduce the large thermal stratification.

Fabrication of 2-D Microwell Arrays for Micro ELISA System (초소형 면역 분석기용 이차원적 배열형 마이크로 우물 제작)

  • Lee, Kook-Nyung;Ahn, Si-Hong;Park, Jae-Hyung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2556-2558
    • /
    • 1998
  • 2-D microwell arrays for micro ELISA (Enzyme-Linked Immuno Solvent Assay) system were fabricated using micromachining technology. The materials for the bottom plate, top plate and sidewall of the microwell were used a #7740 glass, gold and silicon respectively considering bio-compatibility and easy fabrication. Cylindrical or groove shape microwells, which have about $100{\mu}m$ depth and $50{\sim}500{\mu}m$ diameter or width, were arrayed. The fabricated microwell array can be applied to the essential part of a biochip when surface modification is made to immobilize cells or biomolecules on the microwell bottom.

  • PDF

A Study on Mold Fabrication and Forming for PDP Barrier Ribs (PDP 격벽 성형용 몰드 제작과 성형에 대한 연구)

  • Jo, In-Ho;Jeong, Sang-Cheol;Jeong, Hae-Do;Son, Jae-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.171-176
    • /
    • 2001
  • Plasma Display Panel(PDP) is a type of flat panel display utilizing the light emission produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalks from adjacent sub-pixels. Mold for forming barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing process such as screen printing, sand-blasting and photosensitive glass methods. Mold for PDP barrier ribs have stripes of micro grooves transferring glass-material wall. In this paper, Stripes of grooves of which width 48${\mu}{\textrm}{m}$ and 270${\mu}{\textrm}{m}$, depth 124${\mu}{\textrm}{m}$, pitch 274${\mu}{\textrm}{m}$ was acquired by machining hard and brittle materials of WC, Silicon, Alumina with dicing saw blade. Maximum roughness of the bottom and sidewall of the grooves was respectively 120nm, 287nm in grooving WC. Maximum tilt angle caused by difference between upper-most width and lower-most width was 2$^{\circ}$. Maximum Radius of bottom curvatures was 7.75${\mu}{\textrm}{m}$. This results satisfies the specification for barrier ribs of 50 inch XGA PDP if the groove form of mold was fully transferred to the barrier ribs. Barrier ribs were formed with Silicone rubber mold, which is transferred from grooved hard materials. Silicone rubber mold has elasticity accommodating the waveness of lower glass plate of PDP.

  • PDF