• Title/Summary/Keyword: Glass mold

Search Result 295, Processing Time 0.022 seconds

The Application of an EU REACH Protocol to the Occupational Exposure Assessment of Methanol: Targeted Risk Assessment (메탄올 작업장 노출 평가에의 EU REACH 프로토콜 적용: Targeted Risk Assessment)

  • Ra, Jin-Sung;Song, Moon Hwan;Choe, Eun Kyung
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.432-445
    • /
    • 2021
  • Background: The European Centre for Ecotoxicology and Toxicology of Chemicals' Targeted Risk Assessment (ECETOC TRA) tool has been recognized by EU REACH as a preferred approach for calculating worker health risks from chemicals. Objectives: The applicability of the ECETOC TRA to occupational exposure estimation from industrial uses of methanol was studied by inputting surveyed and varied parameters for TRA estimation as well as through comparison with measured data. Methods: Information on uses of methanol was collected from seven working environment monitoring reports along with the measured exposure data. Input parameters for TRA estimation such as operating conditions (OCs), risk management measures (RMMs) and process categories (PROCs) were surveyed. To compare with measured exposures, parameters from the surveyed conditions of ventilation but no use of respiratory protection were applied. Results: PROCs 4, 5, 8a, 10, and 15 were assigned to ten uses of methanol. The uses include as a solvent for manufacturing sun cream, surfactants, dyestuffs, films and adhesives. Methanol was also used as a component in a release agent, hardening media and mold wash for cast products as well as a component of hard-coating solution and a viscosity-controlling agent for manufacturing glass lenses. PROC 8a and PROC 10 of a cast product manufacturer without LEV (local exhaust ventilation) and general ventilation as well as no respiratory protection resulted in the highest exposure to methanol. Assuming the identical worst OCs and RMMs for all uses, exposures from PROC 5, 8a, and 10 were the same and the highest followed by PROC 4 and 15. The estimation resulted in higher exposures in nine uses except one use where measured exposure approximated exposures without RMMs. Conclusions: The role of ECETOC TRA as a conservative exposure assessment tool was confirmed by comparison with measured data. Moreover, it can guide which RMMs should be applied for the safe use of methanol.

A STUDY ON THE BONDING OF COMPOMER TO DECIDUOUS DENTIN (컴포머와 유치 상아질의 결합에 관한 연구)

  • Kim, Jee-Tae;Kim, Yong-Kee;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.509-518
    • /
    • 2002
  • The purpose of this study was to evaluate the bonding of compomer to deciduous dentin which is known to have been developed to improve the weak properties of glass ionomer cement and composite resin. 120 sound primary molars were used for the shear bond strength test and another 24 for the scanning electron microscopic evaluation. Each material was ailed into polyethylene mold attached to exposed dentinal surface($3{\times}4mm$ in diameter) of sample blocks. Shearbond strength was measured using Universal testing machine and data were analyzed statistically with Oneway-ANOVA and Scheffe test. Scanning electron microscopic observation was performed in order to evaluate the pattern of distribution and penetration of resin tags and hybrid layer. Compomer groups(II-V) showed significantly higher bond strength values than glass ionomer group(I)(p<.05). Etching-compomer groups(III, V) showed the significantly higher bond strength than non-etching compomer groups(II, IV)(p<.05), but slightly lower values than composite resin group(VI) with no statistically significant difference(p>.05). No significantly different bond strength was found between compomer groups of different bonding system(p>.05). Scanning electron micrographs showed more irregular distribution of short and thin resin tags in non-etching compomer groups(II, IV) whereas the more regular and intimate distribution of long and thick tags in etching compomer groups(III, V) and composite resin group(VI). The evaluation of hybrid layer also showed more regular formation of thicker layer in etching compomer groups(III, V). Based on the results of present study, the use of compomer as an esthetic restorative material for primary molars might be justified.

  • PDF

COLOR DIFFERENCES BETWEEN RESIN COMPOSITES BEFORE- AND AFTER-POLYMERIZATION, AND SHADE GUIDES (복합레진의 광중합 전·후와 shade guide의 색차 비교)

  • Chon, Yi-Ju;Cho, Sung-Shik;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.299-309
    • /
    • 1999
  • The composite resin, due to its esthetic qualities, is considered the material of choice for restoration of anterior teeth. With respect to shade control, the direct-placement resin composites offer some distinct advantages over indirect restorative procedures. Visible-light-cured (VLC) composites allow dentists to match existing tooth shades or to create new shades and to evaluate them immediately at the time of restoration placement. Optimal intraoral color control can be achieved if optical changes occurring during application are minimized. An ideal VLC composite, then, would be one which is optically stable throughout the polymerization process. The shade guides of the resin composites are generally made of plastic, rather than the actual composite material, and do not accurately depict the true shade, translucency, or opacity of the resin composite after polymerization. So the numerous problems associated with these shade guides lead to varied and sometimes unpredictable results. The aim of this study was to assess the color changes of current resin composite restorative materials which occur as a result of the polymerization process and to compare the color differences between the shade guides provided with the products and the actual resin composites before- and after-polymerization. The results obtained from this investigation should provide the clinician with information which may aid in improved color match of esthetic restoration. Five light activated, resin-based materials (${\AE}$litefil, Amelogen Universal, Spectrum TPH VeridonFil-Photo, and Z100) and shade guides were used in this study. Three specimens of each material and shade combination were made. Each material was condensed inside a 1.5mm thick metal mold with 10mm diameter and pressed between glass plates. Each material was measured immediately before polymerization, and polymerized with Curing Light XL 3000 (3M Dental products, USA) visible light-activation unit for 60 seconds at each side. The specimens were then polished sequentially on wet sandpaper. Shade guides were ground with polishing stones and rubber points (Shofu) to a thickness of approximately 1.5mm. Color characteristics were performed with a spectrophotometer (CM-3500d, Minolta Co., LTD). A computer-controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$ and $b^*$) of each specimen and shade guide. The CIELAB measurements made it possible to evaluate the amount of the color difference values (${\Delta}E{^*}ab$) of resin composites before the polymerization process and shade guides using the post-polishing color of the composite as a control, CIE standard D65 was used as the light source. The results were as follows. 1. Each of the resin composites evaluated showed significant color changes during light-curing process. All the resin composites evaluated except all the tested shades of 2100 showed unacceptable level of color changes (${\Delta}E{^*}ab$ greater than 3.3) between pre-polymerization and post-polishing state. 2. Color differences between most of the resin composites tested and their corresponding shade guides were acceptable but those between C2 shade of ${\AE}$litefil and IE shade of Amelogen Universal and their respective shade guides exceeded what is acceptable. 3. Comparison of the mean ${\Delta}E{^*}ab$ values of materials revealed that Z100 showed the least overall color change between pre-polymerization and post-polishing state followed by ${\AE}$litefil, VeridonFil-Photo, Spectrum TPH, and Amelogen Universal in the order of increasing change and Amelogen Universal. Spectrum TPH, 2100, VeridonFil-Photo and ${\AE}$litefil for the color differences between actual resin and shade guide. 4. In the clinical environment, the shade guide is the better choice than the shade of the actual resin before polymerization when matching colors. But, it is recommended that custom shade guides be made from resin material itself for better color matching.

  • PDF

Synthesis of Ultra High Refractive Index Monomer for Plastic Optical Lens and Its Ophthalmic Lens Preparation (플라스틱 안경렌즈용 초고굴절 모노머 합성 및 이를 이용한 안경렌즈 제조)

  • Jang, Dong Gyu;Kim, Jong Hyo;Lee, Soo Min;Roh, Soo Gyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • Purpose: Plastic optical monomer materials having ultra high refractive index have an income of the whole quantity from advanced nations to domestic companies which are related to plastic optical lens. It is necessary to develop novel plastic optical lens materials in order to overcome a FTA provision and revitalize a stagnating optical lens industry in the interior optical lens industries. The new plastic optical lens materials against the substitution effect of income should be gradually demanded. This work will be synthesized novel super high refractive monomer resin materials of urethane lens series and studied the properties of optical lens using it. Methods: ETS-4 (2-(2-mercaptoethylthio)-3-{2-[3-mercapto-2-(2-mercaptoethylthio)propyl thio]ethylthio}propane -1-thiol), which is optical lens monomer resin having super high refractive index, was synthesized and identified its structure and property by elemental analysis, EI-MS, TGA, FT-IR spectroscopy, $^1H$ and $^{13}C$ NMR spectroscopies. After mixing evenly from mixed monomer resin and diisocyanate series, it was casting in glass mold. After thermal curing, the obtained optical lenses were measured and compared with the refractive index and Abbe number for studies of their optical properties. Results: We have synthesized the novel ultra high refractive index monomer resin, ETS-4, and have identified its structure and property by elemental analysis, EI-MS, TGA, FT-IR spectroscopy, $^1H$ and $^{13}C$ NMR spectroscopies. The existence of three isomers for EST-4 was identified by $^{13}C$ NMR spectroscopy. The refractive index ($N_d$ at $25^{\circ}C$) of monomer resin in liquid state obtained from the Abbe refractometer was 1.647. The refractive indexes of raw plastic optical lenses prepared from the mixed ETS-4 monomer and diisocyanate series were in the range of 1.656~1.680. Conclusions: Novel super high refractive index plastic optical lens monomer was synthesized and analysed, the optical lenses prepared using it were colorless transparency and excellent properties. It is of utility for the industrialization.

  • PDF

Effects of specimens dimension on the flexural properties and testing reliability of dental composite resin (치과용 복합레진의 굽힘 특성과 시험 신뢰도에 미치는 시편 크기의 영향)

  • Im, Yong-Woon;Hwang, Seong-sig;Kim, Sa-hak;Lee, Hae-Hyoung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.273-280
    • /
    • 2017
  • The aim of the present study was to investigate the effects of specimen dimension on the flexural properties and testing reliability of dental composite resin. The composite resin was prepared experimentally by mixing a resin matrix with silanated micrometer glass filler at 50 vol%. Flexural specimens with various dimension in specimen's width were fabricated by light curing using a split metal mold; $25{\times}2{\times}2mm$, $25{\times}2{\times}4mm$, $25{\times}2{\times}6mm$ in length ${\times}$ height ${\times}$ width. The flexural strength and modulus were determined according to ISO 4049 test protocol at a span length of 20 mm (normal-flexural strength; NFS). Another flexural test was conducted using mini-sized specimens ($12{\times}2{\times}2mm$, $12{\times}2{\times}4mm$, $12{\times}2{\times}6mm$) from the broken specimens at a span length of 10 mm (mini-flexural strength; MFS). Data were analyzed with ANOVA and Duncan's post-hoc test and the test reliability was evaluated by Weibull analysis. Results showed that there are generally no significant difference in flexural strength with the increase in the specimen width in NFS and MFS tests. However, the test reliability of flexural strength based on Weibull analysis was largely changed with the variables in the dimension of width and span length. The flexural modulus of NFS was increased as the dimension of specimens width increased while there was no trend in flexural modulus of MFS test. Overall results recommend that the evaluation of flexural properties and the reliability of dental composite resins should be performed with more than one test method.