• Title/Summary/Keyword: Glass lens

Search Result 259, Processing Time 0.034 seconds

A Research on DLC Thin Film Coating of a SiC Core for Aspheric Glass Lens Molding (비구면 유리렌즈 성형용 SiC 코어의 DLC 코팅에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.28-32
    • /
    • 2010
  • Technical demands for aspheric glass lens formed in market increases its application from simple camera lens module to fiber optics connection module in optical engineering. WC is often used as a metal core of the aspheric glass lens, but the long life time is issued because it fabricated in high temperature and high pressure environment. High hard thin film coating of lens core increases the core life time critically. Diamond Like Carbon(DLC) thin film coating shows very high hardness and low surface roughness, i.e. low friction between a glass lens and a metal core, and thus draw interests from an optical manufacturing industry. In addition, DLC thin film coating can removed by etching process and deposit the film again, which makes the core renewable. In this study, DLC films were deposited on the SiC ceramic core. The process variable in FVA(Filtered Vacuum Arc) method was the substrate bias-voltage. Deposited thin film was evaluated by raman spectroscopy, AFM and nano indenter and measured its crystal structure, surface roughness, and hardness. After applying optimum thin film condition, the life time and crystal structure transition of DLC thin film was monitored.

Development of Sealing Technology for Far-Infrared Multispectral ZnS Using Chalcogenide Glass Material

  • Soyoung Kim;Jung-Hwan In;Karam Han;Yoon Hee Nam;Seon Hoon Kim;Ju Hyeon Choi
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.515-521
    • /
    • 2022
  • Various types of optical materials and devices used in special environments must satisfy durability and optical properties. In order to improve the durability of zinc sulfide multispectral (MS ZnS) substrates with transmission wavelengths from visible to infrared, Ge-Sb-Se-based chalcogenide glass was used as a sealing material to bond the MS ZnS substrates. Wetting tests of the Ge-Sb-Se-based chalcogenide glass were conducted to analyze flowability as a function of temperature, by considering the glass transition temperature (Tg) and softening temperature (Ts). In the wetting test, the viscous flow of the chalcogenide glass sample was analyzed according to the temperature. After placing the chalcogenide glass disk between MS ZnS substrates (20 × 30 mm), the sealing test was performed at a temperature of 485 ℃ for 60 min. Notably, it was found that the Ge-Sb-Se-based chalcogenide glass sealed the MS ZnS substrates well. After the MS ZnS substrates were sealed with chalcogenide glass, they showed a transmission of 55 % over 3~12 ㎛. The tensile strength of the sealed MS ZnS substrates with Ge-Sb-Se-based chalcogenide glass was analyzed by applying a maximum load of about 240 N, confirming its suitability as a sealing material in the far infrared range.

A Study on Thermal Deformation Compensation in the Molding of Aspheric Glass Lenses (비구면 유리렌즈 열변형 보정에 관한 연구)

  • Lee, Dong-Kil;Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Hak-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.22-26
    • /
    • 2010
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized increase gradually. Generally, the aspheric glass lens is manufactured by Glass Molding Press (GMP) method using tungsten carbide (WC) mold core. In this study, the thermal deformation which was occurred by GMP process was analyzed and applied it to compensate the aspheric glass lens. The compensated lens was satisfied that can be applied to the actual specifications.

Transcription Characteristics in the Molding of Aspheric Glass Lenses for Camera Phone Module (휴대폰 카메라용 비구면 Glass 렌즈 전사특성 분석)

  • Cha, D.H.;Lee, J.K.;Kim, M.J.;Lee, D.K.;Kim, H.J.;Kim, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.363-366
    • /
    • 2008
  • The transcription characteristics in the molding of aspheric glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. The molded lens showed a transcription ratio of 93.4%, which is obtained by comparing the form accuracy (PV) values of the mold and the molded lens. The transcription of the roughness topography was ascertained by bearing ratio analysis.

  • PDF

Transcription Characteristics in the Molding of Aspheric Glass Lenses for Camera Phone Module (휴대폰 카메라용 비구면 Glass렌즈 전사특성 분석)

  • Cha, Du-Hwan;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.336-336
    • /
    • 2008
  • The transcription characteristics in the molding of aspheric glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. The molded lens showed a transcription ratio of 93.4%, which is obtained bycomparing the form accuracy (PV) values of the mold and the molded lens. The transcription of the roughness topography was ascertained by bearing ratio analysis.

  • PDF

Materials for Spectacle lens cutting with Glass phase (유리상 첨가한 안경렌즈 절삭용 재료)

  • Lee, Young-II
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.145-148
    • /
    • 2001
  • SiC composites were developed by incorporating glass phase into SiC, in the light of improving mechanical properties of material for spectacle lens cutting. Specimens for spectacle lens cutting with glass phase as sintering additives have been fabricated by hot-pressing at $1810^{\circ}C$ for 2 hr under a pressure of 25 MPa. The fracture toughness and hardness of hot-pressed specimens were characterized and compared with previous works. Typical hardness and fracture toughness of materials for spectacle lens cutting were 12 GPa and $5.1MPa{\cdot}m^{1/2}$ respectively.

  • PDF

DLC Coating Effect of WC Core Surface for Glass Molding Lens (비구면 Glass 렌즈 성형용 초경합금(WC) 코어의 DLC 코팅 효과)

  • Kim, Hyun-Uk;Jeong, Sang-Hwa;Park, Yong-Pil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1050-1054
    • /
    • 2006
  • There have been intensive and continuous efforts in the field of DLC coating process because of their feature, like high hardness, high elasticity, abrasion resistance and chemical stability and have been applied widely the industrial areas. In this research, optimal grinding condition was investigated using Microlens Process Machine for the development of aspheric glass lens which is to be used for mobile phone module with 3 mega pixel and 2.5X optical zoom, and tungsten carbide(WC) mold cote was manufactured using high performance ultra precision machining and the effects of DLC coating on the form accuracy(PV) and surface roughness(Ra) of WC mold core was evaluated.

Evaluation of Thermography Camera Using Molded Optical Lens for Medical Applications (몰드성형 광학렌즈를 이용한 의료기기용 열화상카메라 체열진단의 적용도 평가)

  • Ryu, Seong Mi;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.624-628
    • /
    • 2013
  • With the recent development of less-costly uncooled detector technology, expensive optics are among the remaining significant cost drivers in the thermography camera. As a potential solution to this problem, the fabrication of IR lenses using chalcogenide glass has been studied in recent years. We report on the molding and evaluation of a ultra-precision chalcogenide-glass lens for the thermography camera for body-temperature monitoring. In addition, we fabricated prototype thermography camera using the chalcogenide-glass lens and obtained the thermal image from the camera. In this work, it was found out that thermography camera discerned body-temperature between 20 and $50^{\circ}C$ through the analysis of thermal image. It is confirmed that thermography camera using the chalcogenide-glass lens is applicable to the body-temperature monitoring system.

Optimization of optical design for Eye Glass Display using hybrid aspheric lens (Hybrid 비구면 렌즈를 이용한 Eye glass Display용 광학시스템의 최적화)

  • Kim, T.H.;Park, K.B.;Park, Y.S.;Kim, H.W.;Seok, J.M.;Moon, H.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.123-126
    • /
    • 2005
  • Eye Glass Display (EGD) with microdisplay to realize the virtual display can make the large screen, so virtual image has been developed by using microdisplay panel. This paper shows study of low cost lens design and simulation for microdisplay system with 0.6"LCoS panel. Lens design optimized consider to spherical aberration, astigmatism, distortion, and chromatic aberration. Code V is used and it designed an aspheric lens about exit pupil 6mm, eye relief 20mm and 35 degree of field of view (FOV). With the application this aspheric lens to liquid crystal on silicon (LCOS) type's microdisplay, virtual image showed 50 inch at 2m. One side of the aspheric lens was constituted from diffractive optical element (DOE) for the improvement in a performance. It had less than 2.5% of distortion value and modulation transfer function in axial had 20% of resolution with 32 lp/mm spatial frequency. The optical system is suitable for display of 15.6 mm-diagonal with SVGA.

  • PDF

A Study on Grinding Characteristics of Aspherical Glass Lens core of High-pixel Digital Camera in Diamond Grinding Process (고화소 디지털 카메라 비구면 Glass렌즈 초정밀연삭 특성에 관한 연구)

  • 현동훈;이승준
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.31-36
    • /
    • 2003
  • Electronic or measuring instruments equipped with aspherical lens have recently been used since aspherical lens is more effective than spherical one. for the mass production of aspherical lenses, specific molds with precisely machined cores should be prepared. Some researches on the aspherical lens machining have been carried out to date. However, ultra-precise finding of aspherical or mold core has not been fully studied. In this study, the ultra-precise grinding and evaluating system were established to investigate the finding characteristics of aspherical lenses. Unlike conventional grinding process, since a highly-precise lathe were operated in a clean room without vibration the experimental results can be very useful for further studies on ultra-precise grinding process.