• Title/Summary/Keyword: Glass fiber reinforced resin

Search Result 143, Processing Time 0.123 seconds

Structural Performance of Reinforced Concrete Beams Strengthened with Sprayed Fiber Reinforced Polymers (Sprayed FRP로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Lee, Kang-Seok;Son, Young-Seon;Lee, Moon-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.421-431
    • /
    • 2007
  • The main purpose of this study is to develop a sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing one of the carbon or glass chopped fibers and one of the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In order to investigate the material property of the sprayed FRP, this study carried out tensile tests of the material specimens, which were changed with the combinations of various variables including the length of chopped fiber and the mixture ratio of chopped fiber and resin. These variables were set to have the equal material strength, compared with that of one layer of the FRP sheet. As a result, the optimal length of glass and carbon chopped fibers was fumed out to be 38 mm, and the optimal mixture ratio between chopped fiber and resin was also turned out to be 1 : 2 from each variable. And also, the thickness of the sprayed FRP to have the equal strength to one layer of the FRP sheet was finally calculated. In is study, a series of experiments were carried out to evaluate the strengthening effects of flexural beams, shear beams and damaged beams strengthened with the sprayed FRP method, respectively. The results revealed that the strengthening effects of the flexural and shear specimens were reasonably similar to those of the FRP sheet, and the developed Sprayed FRP technique is able to be used as a strengthening scheme of existing RC building.

Damage characterization in fiber reinforced polymer via Digital Volume Correlation

  • Vrgoc, Ana;Tomicevic, Zvonimir;Smaniotto, Benjamin;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.10 no.6
    • /
    • pp.545-560
    • /
    • 2021
  • An in situ experiment imaged via X-ray computed tomography was performed on a continuous glass fiber mat reinforced epoxy resin composite. The investigated dogbone specimen was subjected to uniaxial cyclic tension. The reconstructed scans (i.e., gray level volumes) were registered via Digital Volume Correlation. The calculated maximum principal strain fields and correlation residual maps exhibited strain localization areas within the material bulk, thus indicating damage inception and growth toward the specimen surface. Strained bands and areas of elevated correlation residuals were mainly concentrated in the narrowest gauge section of the investigated specimen, as well as on the specimen ligament edges. Gray level residuals were laid over the corresponding mesostructure to highlight and characterize damage development within the material bulk.

MARGINAL FITNESS AND MARGINAL LEAKAGE OF FIBER-REINFORCED COMPOSITE CROWNS DEFENDING UPON LUTING CEMENTS (섬유강화형 복합레진전장관의 변연적합도 및 변연누출에 관한 연구)

  • Kim, Sun-Jong;Shin, Sang-Wan;Han, Jung-Suk;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.618-630
    • /
    • 2000
  • As Fiber-reinforced composite restorations cannot be made without leaving a marginal gap, luting cements play a pivotal role in sealing the margins as a prevention against margnal leakage. A recently introduced adhesive resin cement system is claimed to adhere chemically, as well as mechanically, to tooth substances, dental alloys and porcelain. But when considering the clinical variation conventional cementation using Zinc Phosphate and Glass-Ionomer can be requested. A vitro study was undertaken to compare microleakage and marginal fitness of Fiber-reinforced composite crowns(Targis/Vectris) depending upon luting cements. Fifty non-carious human premolar teeth were randomly divided into five experimental groups of 10 teeth each and luted with five luting cements. ($Bistite\;II^(R),\;Super-bond^(R),\;Variolink\;II^(R)$), Zinc phosphate and Glass-Ionomer cement) After 24 hours of being luted, all specimens were thermocycled 300 times through water bath of $5^{\circ}C\;and\;55^{\circ}C$ in each bath, then the quality of the marginal fitness was measured by the Digital Microscope and marginal leakage was characterized using Dye Penetration technique and the Digital Microscope The results were as follows : 1. The mean values of marginal fit were Bistite II($46.78{\mu}m$), Variolink II($56.25{\mu}m$), Super-Bond($56.78{\mu}m$), Glass-Ionomer($99.21{\mu}m$), Zinc Phosphate($109.49{\mu}m$) indicated a statistically significant difference at p<0.001. 2. The mean microleakage values of tooth-cement interface, restoration-cement interface were increased in the order of Variolink II, Bistite II, Super-Bond, Glass-Ionomer, Zinc Phosphate 3. Crowns luted with resin cement (Bistite II, Super-Bond, Variolink II, etc) exhibited less marginal gap and marginal leakage than those luted with conventional Glass-Ionomer and Zinc Phosphate cement. 4. The results indicated that all five luting systems yielded comparable and acceptable marginal fit.

  • PDF

In vitro study of microleakage of endodontically treated teeth restored with different adhesive systems and fiber-reinforced posts (다양한 접착시스템을 이용하여 섬유 강화형 포스트로 수복한 치아에서의 미세누출에 관한 연구)

  • Park, Joon-Ho;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.74-81
    • /
    • 2014
  • Purpose: While studies have examined microleakage in endodontically treated teeth restored with posts, microleakage among post and adhesive systems remains a concern. This study compared the sealing properties of 3 adhesively luted post systems. Materials and methods: Thirty-six endodontically treated permanent maxillary central incisors were divided into 3 groups: Zirconia-glass fiber, Quartz-glass fiber, Polyethylene fiber posts. Post space was prepared and each post was adhesively luted with 3 systems. The specimens were separately immersed in freshly prepared 2% methylene blue solution for 1 week. The cleaned specimens were then embedded in autopolymerizing acrylic resin. The root portion of tooth were horizontally sectioned into three pieces (apical, middle, and coronal portions). An occlusal view of each section was digitally photographed with a stereomicroscope. The methylene blue-infiltrated surface for each specimen was measured. Dye penetration was estimated as the ratio of the methylene blue-infiltrated surface to the total dentin surface. Results: No significant differences were found among post types. The variables of middle section and 3-stage adhesive produced significant differences in microleakage between the following post pairs: zirconia-glass fiber versus quartz-glass fiber, zirconia-glass fiber versus polyethylene fiber, and quartz-glass fiber versus polyethylene fiber (P<.05). There were significant differences between the apical and coronal sections of each post type, and between apical versus middle sections of quarze-glass fiber and polyethylene fiber posts (P<.05). Conclusion: No significant differences were found among post types. The 3-stage adhesive produced significant differences in microleakage between the following post pairs.

Applicability Assessment of Epoxy Resin Reinforced Glass Fiber Composites Through Mechanical Properties in Cryogenic Environment for LNG CCS (에폭시 수지가 적용된 유리섬유 복합재료의 극저온 환경 기계적 특성 분석을 통한 LNG CCS 적용성 평가)

  • Yeom, Dong-Ju;Bang, Seoung-Gil;Jeong, Yeon-Jae;Kim, Hee-Tae;Park, Seong-Bo;Kim, Yong-Tai;Oh, Hoon-Gyu;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.262-270
    • /
    • 2021
  • Consumption of Liquefied Natural Gas (LNG) has increased due to environmental pollution; therefore, the need for LNG carriers can efficiently transport large quantities of LNG, is increased. In various types of LNG Cargo Containment System (CCS), Membrane-type MARK-III composed of composite materials is generally employed in the construction of an LNG carrier. Among composite materials in a Mark-III system, glass-fiber composites act as a secondary barrier to prevent the inner hull structure from leakage of LNG when the primary barrier is damaged. Nevertheless, several cases of damage to the secondary barriers have been reported and if damage occurs, LNG can flow into the inner hull structure, causing a brittle fracture. To prevent those problems, this study conducted the applicability assessment of composite material manufactured by bonding glass-fiber and aluminum with epoxy resin and increasing layer from three-ply (triplex) to five-ply (pentaplex). Tensile tests were performed in five temperature points (25, -20, -70, -120, and -170℃) considering temperature gradient in CCS. Scanning Electron Microscopy (SEM) and Coefficient of Thermal Expansion (CTE) analyses were carried out to evaluate the microstructure and thermos-mechanical properties of the pentaplex. The results showed epoxy resin and increasing layer number contributed to improving the mechanical properties over the whole temperature range.

Dielectric Cure Monitoring for Glass/Polyester Prepreg Composites (유리섬유/폴리에스터 복합재료를 위한 유전 경화 모니터링)

  • Kim, Hyoung-Geun;Kim, Jin-Kook;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.797-803
    • /
    • 2001
  • The on-line cure monitoring of fiber reinforced thermosetting resin matrix composite material was performed for the better quality and productivity during manufacturing. Since the dissipation factor measured by dielectrometry method is dependent on the degree of cure and temperature of resin, in this study, a new method to obtain the degree of cure during on-line cure monitoring for glass/polyester composites was developed by employing a combination function of the temperature and the dissipation factor. Two sensor signals from a K-type thermocouple and an interdigitated dielectric sensor were processed during curing process under various cure cycles. The DSC (Differential Scanning Calorimetry) data was also used for the reference of degree of cure.

  • PDF

유리섬유/에폭시 복합절연재료의 계면 접착력 개선에 관한 연구 1

  • 이종호;황영한;이규철
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.136-143
    • /
    • 1995
  • With the contact angle of phase dropping epoxy resin on the inorganic filler(glass plate) surface treated with air plasma, we have studied about the interfacial wettability between epoxy resin and glass plate as a simple model of glass fiber reinforced composite materials. The contact angle on the inorganic filler surface varied with surface treatment conditions. The contact angle significantly depends on plasma treating time and environment temperature in the oven. From the view point of plasma treatment condition in this work, when discharge conditions were pressure 200mtorr, voltage 800V, magnetic flux density 8OGauss, optimum treatment time were proved as 3,4 and 5 minutes for the environment of >$80^{\circ}C$, >$100^{\circ}C$ and >$120^{\circ}C$, respectively.

  • PDF

A Study on the Wettability of Inorganic Insulator due to Plasma Surface Treatment Technique (플라즈마 표면처리 기법에 의한 무기절연물의 젖음성 변화에 관한 연구)

  • Han, Hwang-Yeong;Eom, Moo-Soo;Park, Hong-Tae;Lee, Kyu-Chul;Lee, Jong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1292-1294
    • /
    • 1994
  • With the contact angle of phase epoxy resin on the inorganic filler(glass plate) surface treated with air plasma, we have studied about the interface between epoxy resin and glass plate as simple model of a glass fiber reinforced composite materials. The contact angle on the inorganic filler surface varied with surface treatment conditions. The contact angle significantly depends on plasma treating time and environment temperature of the oven.

  • PDF

A Study on the Surface Wettability of Inorganic Insulator (무기절연물 표면상의 젖음성 변화에 관한 연구)

  • Hwang, Yeong-Han;Eom, Moo-Soo;Lee, Kyu-Chul;Lee, Jong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1233-1235
    • /
    • 1993
  • With the Contact angle of phase epoxy resin on the inorganic filler(glass plate) surface treated with air plasma, we have studied about the interface between epoxy resin and glass plate as simple model of a glass fiber reinforced composite materials. The contact angle on the inorganic filler surface varied with ambient temperature and surface treatment conditions.

  • PDF

Mechanical Properties of Hybrid FRP Rebar (하이브리드 FRP 리바의 역학적 특성)

  • 박찬기;원종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.58-67
    • /
    • 2003
  • Over the last decade fiber-reinforced polymer (FRP) reinforcement consisting of glass, carbon, or aramid fibers embedded in a resin such as vinyl ester, epoxy, or polyester has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. But reinforcing rebar for concrete made of FRP rebar has linear elastic behavior up to tensile failure. For safety a certain plastic strain and an elongation greater than 3% at maximum load is usually required for steel reinforcement in concrete structures. The same should be required for FRP rebar. Thus, the main object of this study was to develop new type of hybrid FRP rebar Also, this study was evaluated to the mechanical properties of Hybrid FRP rebar. The Manufacture of the hybrid FRP rebar was achieved by pultrusion, and braiding and filament winding techniques. Tensile and interlaminar shear test results of Hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.