• 제목/요약/키워드: Glass fiber reinforced composite

검색결과 475건 처리시간 0.032초

Thermoforming용 長纖維强化 複合材料의 成形工程에 관한 硏究 分離$\cdot$配向의 相關계수 (A Study on the Processing of Long Fiber-Reinforced Composite Materials for Thermoforming On the Correlation Coefficient between Separation and Orientation)

  • 이동기;김정락;김상필;이우일;김이곤
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1106-1114
    • /
    • 1993
  • 본 연구에서는우수한 섬유강화 고분자복합판의 제조 및 개량을 섬유구조의 분리. 배향의 관점에서 연구한다. 유리섬유매트는 유리섬유를 50mm의 길이로 균일하 게 절단하여 공기중에서 분산시켜 6~7mm두께로 만들고,이 유리섬유매트를 바늘의 종류와 스트레칭 횟수에 따라 니들펀칭하여 유리섬유의 매트구조를 변화시킨다. 유리 섬유의 매트구조 별로 모재와 적층시킨 다음 열압축프레스를 사용하여 1차로 시이트를 제작하고, 이 제작된 시이트를 가열로로 가열하여 2차 고온압축 프레스성형한다. 이 때 섬유와 모재의 분리 및 배향의 상관관계를 나타내는 상관계수를 구하고, 이 계수에 미치는 매트 구조의 영향에 대한 실험결과를 보고한다.

Characterization of Surface Quality in Orthogonal Cutting of Glass Fiber Reinforced Plastics

  • Choi Gi Heung
    • International Journal of Safety
    • /
    • 제3권1호
    • /
    • pp.1-5
    • /
    • 2004
  • This study discusses frequency analysis based on autoregressive (AR) time series model, and the characterization of surface quality in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlations between the fiber pull-out and AR model coefficients are then established.

잣나무 만곡 복합집성재의 휨강도 성능평가 (Performance Evaluation of Bending Strength of Curved Composite Glulams Made of Korean White Pine)

  • 송요진;정홍주;이인환;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권4호
    • /
    • pp.463-469
    • /
    • 2015
  • 본 연구에서는 잣나무 곡선부재의 휨 성능을 향상시키기 위하여 Glass fiber 소재의 보강재와 낙엽송 층재로 보강한 만곡 복합집성재를 제작하였다. 잣나무 만곡집성재는 보강유무 및 보강방법에 의하여 다섯 종류로 제작되었다. 대조시험편인 Type-A는 잣나무 층재로만 제작된 시험편이며, Type-B는 최외층에 잣나무 대신 동일한 두께의 국내산 낙엽송층재로 제작한 시험편이다. Type-C는 직물형태의 glass fiber cloth가 매 층재 사이에 삽입된 시험편이다. Type-D는 glass fiber cloth가 최외층재들의 안쪽과 바깥쪽에 2장씩 보강된 시험편이다. Type-E는 sheet 타입의 GFRP를 Type-D와 동일한 위치에 1장씩 보강한 시험편이다. 휨 강도 시험 결과, Type-A의 파괴계수와 비교하여 Type-B는 29%, Type-C는 6%, Type-E는 48% 증가되었으며 Type-D는 오히려 2% 감소하였다. 파괴모드에서 Type-A와 Type-B 그리고 Type-C는 최대하중에 도달하는 순간 완전히 파단되는 경향을 보였다. 그러나 Type-D와 Type-E는 보강재에 의해 파단이 억제되어 하중의 감소가 천천히 진행되었으며, 보강재 GFRP sheet(Type-E)는 압축응력과 인장응력에 대한 보강효과가 glass fiber cloth(Type-D)보다 양호한 것으로 확인되었다.

긴 유리섬유강화 Polypropylene 복합재료의 섬유 중량비에 따른 파괴인성 변화 (Effect of Fiber Weight Fraction on the Fracture Toughness of Long Glass-Fiber Reinforced Polypropylene Composites)

  • 이경엽;이중희;양준호
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.164-167
    • /
    • 1999
  • This study concerns with the effect of fiber weight fraction on the fracture toughness of long glass-fiber reinforced polypropylene composites. Fracture tests were conducted using compact tension (CT) specimens made of glass fiber polypropylene composites. Three fiber weight fractions of 20%, 30%, and 40% were used. Fracture toughness was determined from the compliance method. Results showed that compliance decreased with increasing fiber weight fraction while critical load increased with fiber weight fraction. Averaged fracture toughness increased 14% as fiber weight fraction increased from 20% to 40%.

  • PDF

개량형 가동보에 적용하기 위한 하이브리드 강판/GFRP 패널 게이트의 강판게이트 표면형상에 따른 휨 및 계면 부착 특성 평가 (Flexural and Interfacial Bond Properties of Hybrid Steel/Glass Fiber Reinforced Polymer Composites Panel Gate with Steel Gate Surface Deformation for Improved Movable Weir)

  • 김기원;권형중;김필식;박찬기
    • 한국농공학회논문집
    • /
    • 제57권2호
    • /
    • pp.57-66
    • /
    • 2015
  • The purpose of this study was to improved the durability of a improved movable weir by replacing the improved movable weir's metal gate with a hybrid steel/glass fiber reinforced polymer composites panel gate. Because the metal gate of a improved movable weir is always in contact with water, its service life is shortened by corrosion. This study made four type of hybrid steel/glass fiber reinforced polymer composites panel gate with different steel gate surface deformation (control, sand blast, scratch and hole), flexural. Fracture properties tests were performed depending on the steel gate surface deformation. According to the test results, the flexural behavior, flexural strength and fracture properties of hybrid steel/glass fiber reinforced polymer composites panel gate was affected by the steel panel gate surface deformation. Also, the sand blast type hybrid steel/glass fiber reinforced polymer composites panel gate shows vastly superior flexural and fracture performance compared to other types.

Characterization of Fiber Pull-out in Orthogonal Cutting of Glass fiber Reinforced Plastics

  • Park, Gi-Heung
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2003년도 추계 학술논문발표회 논문집
    • /
    • pp.113-117
    • /
    • 2003
  • The reliability of machined fiber reinforced composites (FRC) in high strength applications and the safety in using these components are often critically dependent upon the quality of surface produced by machining since the surface layer may drastically affect the strength and chemical resistance of the material [1,2,3,4]. Current study will discuss the characterization of fiber pull-out in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the fiber pull-out and the AR coefficients is examined first and effects of fiber orientation, cutting parameters and tool geometry on the fiber pull-out are also discussed.

  • PDF

브레이드 투루젼법에 의한 콘크리트 구조물용 하이브리드 섬유강화 복합재료 리바 개발 (Development of Hybrid Fiber Reinforced Plastics Rebar for Concrete Structure by the Braidtrusion Process)

  • 최명선;한길영;이동기;심재기
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.199-205
    • /
    • 2001
  • This paper describes the design methodology, manufacturing process, rebar tensile and bending properties. Braidtrusion is a direct Composite fabrication technique utilizing an in-line braiding and pultrusion process. The produced Composite rebar exhibits ductile stress-strain behavior similar to that of conventional steel bar. Various rebar diameters ranging from modeling scale(3m) to full-scale prototype of 9.5mm have been produced Glass Fiber Reinforced Plastics(GFRP) rebar were successfully fabricated at $\phi$8.5mm and $\phi$9.5mm nominal diameters of soild and hollow type using a braidtrusion process. Tensile and bending specimens were tested and compared with behavior of stress-strain of GFRP rebar and steel bar.

  • PDF

Identification of Cutting Mechanisms in Orthogonal Cutting of Glass Fiber Reinforced Composites

  • Choe Gi-Heung
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2000년도 추계 학술논문발표회 논문집
    • /
    • pp.39-45
    • /
    • 2000
  • In recent years, composite materials such as fiber reinforced plastics (FRP) have gained considerable attention in the aircraft and automobile industries due to their light weight, high modulus and specific strength. In practice, control of chip formation appears to be the most serious problem since chip formation mechanism in composite machining has significant effects on the finished surface [1,2,3,4,5]. Current study will discuss frequency analysis based on autoregressive (AR) time series model and process characterization in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the different chip formation mechanisms and model coefficients are established.(omitted)

  • PDF

실리카흄과 현장기계함침을 이용한 유리섬유 복합재(CAF)의 콘크리트 구조물 보수보강공법 (Repair and Retrofit System of Concrete Structures using Fiber Glass and Epoxy Composite Sheets, Improved Through Utilization of Silica fume and Mechanical Saturator)

  • 유용하;권성준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.785-792
    • /
    • 2000
  • Repair and retrofit system of concrete structures has been developed from conventional reinforced concrete overlaying, steel plate bonding and recently to fiber composite systems. Research and study on carbon, aramid, and glass fiber composite system has been actively carried out from all over the world Glass fiber composite is proved to be competitive technically and enconomically, among fiber composite system. CAF system is a system developed locally using all domestic materal, glass fabric and epoxy, and improved in shear bonding property by utilizing silica fume mixed with epoxy. All the tests on material properties, structural behavior, constructiveness at site and quality control procedure proved to be most appropriate system so far developed. Futher research work is and will be under progress for utilization of this system which will be applied to more adverse situation.

  • PDF

Mechanical Behavior of Slender Concrete-Filled Fiber Reinforced Polymer Columns

  • 최석환;이명;이성우
    • 콘크리트학회논문집
    • /
    • 제16권4호
    • /
    • pp.565-572
    • /
    • 2004
  • The mechanical behavior of concrete-filled glass fiber reinforced polymer columns is affected by various factors including concrete strength, stiffness of tube, end confinement effect, and slenderness ratio of members. In this research the behavior of slender columns was examined both experimentally and analytically. Experimental works include 1) compression test with 30cm long glass fiber composite columns under different end confinement conditions, 2) uni-axial compression test for 7 slender columns, which have various slenderness ratios. Short-length stocky columns gave high strength and ductility revealing high confinement action of FRP tubes. The strength increment and strain change were examined under different end confinement conditions. With slender columns, failure strengths, confinement effects, and stress-strains relations were examined. Through analytical work, effective length was computed and it was compared with the amount of reduction in column strength, which is required to predict design strength with slender specimens. This study shows the feasibility of slender concrete-filled glass fiber reinforced polymer composite columns.