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Abstract : This study discusses frequency analysis based on autoregressive (AR) time series model, and the char-
acterization of surface quality in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed
idealized composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method
employs a force sensor and the signals from the sensor are processed using AR time series model. The experimen-
tal correlations between the fiber pull-out and AR model coefficients are then established.
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1. Introduction

In recent years, composite materials such as fiber
reinforced composites (FRC) have gained considerable
attention in the aircraft and automobile industries due to
their light weight, high modulus and specific strength.
The reliability of machined FRC components in high
strength applications and the safety in using these com-
ponents are often critically dependent upon the quality
of surface produced by machining since the surface
layer may drastically affect the strength and chemical
resistance of the material. In practice, control of chip
formation appears to be the most serious problem since
chip formation mechanism in composite machining has
significant effects on the finished surface [1-5].

If the process of machining composite were to be the
one of intelligent nature for insuring surface quality
needed, the ability to sense the desired characteristics of
the process and the properties of a product would be
essential. Successful implementation of such an intelli-
gent sensor typically requires a realistic model of com-
posite machining process. Despite the necessary in-plant
calibration, process modeling and characterization based
on an empirical model would make practical implemen-
tation of an intelligent sensor possible. Among various
sensor signals available nowadays, force (vibration) sig-
nals from various types of machining operations were
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found to contain very rich information about the pro-
cess [6]. The fundamental understanding of the cutting
force signals and frequency analysis, therefore, play an
important role in the monitoring and control of machin-
ing processes.

Current study will discuss frequency analysis based
on autoregressive (AR) time series model and the char-
acterization of surface quality in orthogonal cutting of a
fiber-matrix composite materials. A sparsely distributed
idealized model composite material, namely a glass
reinforced polyester (GFRP) was used as workpiece.
Analysis method employs a force sensor and the signals
from the sensor are processed using AR time series
model. Effects of fiber orientation, cutting parameters
and tool geometry on the cutting mechanisms and sur-
face quality are discussed.

2. Orthogonal Cutting of GFRP

Machining of GFRP involves shearing and cracking
of matrix material (polyester), brittle fracture across the
fiber (glass), fiber pull-out and fiber-matrix debonding
(by tensile fracture), and delamination prior to final
fracture both in the chip and below the cutting plane
depending on the fiber orientation. Damage of the machined
surface was found to be highest when machining mate-
rials with roving oriented 45° towards the cutting edge
or the fiber orientation angle (FOA) q=135° in Figure 1
[3,7]. Three distinct mechanisms, i.e., cutting, shearing
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Fig. 1. Schematic of cutting mechanisms in orthogonal cutting
of GFRP.

and fracture along the fiber-matrix interface were then
identified. More specifically, depending on the fiber ori-
entation, cutting mechanisms can be categorized into the
following 4 types:

(1) Type I (0° fiber orientation): Cutting mechanism is
characterized by Mode I loading and fracture along the
fiber-matrix interface, Mode II loading through tool
advancement, and fracture perpendicular to the fiber
direction under bending load. Combined effect of these
mechanisms can be manifested by the delamination of
adjacent fiber layers along the machined surface (or
fiber-matrix debonding).

(2) Type II (15° - 75° fiber orientation): In this positive
fiber orientation, cutting mechanism is composed of fracture
from compression induced shear across the fiber axis
and interfacial shearing along the fiber direction which
eventually causes fiber-matrix debonding.

(3) Type II (75° - 90° fiber orientation): Cutting mech-
anism is characterized by compression induced fracture
perpendicular to the fibers and inter-laminar shear frac-
ture along the fiber/matrix interface.

(4) Type IV (beyond 90° fiber orientation): Cutting
mechanism in this type is basically similar to Type IIL
However, intermittent fracture across the fiber axis is
visible, which in turn contributes to the burst type force
signal.

3. Spectral Analysis

3.1. Autoregressive (AR) Time Series Model

A time series model that approximates many discrete
time deterministic and stochastic processes in engineer-
ing problems represents the stationary time correlation

of the process. An AR process of order r, in particular,
is given by

x(n) = ia,.x(n—i)+(5u(n) (D

i=1

where x(n) is the output sequence of the filter that
models the observed data. ¢ is a filter gain, u(n) is a
zero mean, unit variance Gaussian input driving noise
sequence and ay=I1. Model parameter g; comprises a
pattern vector A={ap, @1, ..., a,}. In the present case,
x(n) is the measured discrete force signal sequence. Let

G(z) =1+ Yaz", z=¢"" 2)

i=1

in z-domain where AT is sampling time interval. Then,
x(n) is obtained from u(n) by the spectral components
through a linear filter whose characteristic function is s/
G(z) [8]. The continuous power spectrum, as a function
of frequency w, corresponding to the g; is given (within
a constant factor) by

1
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r
~2mjwATi
1+ Y ae ™"

i=1

The AR coefficients of a random process can be
found exactly only if the exact autocorrelation function
of the process is available. However, the autocorrelation
is not available in practice and only an estimate of the
AR vparameters can be found based on the available
data. In this study, the blockwise processing method
was used due to its superior ability to estimate the AR
coefficients. The sequential methods are, however, more
suitable for real time applications due to their ability to
constantly adapt the coefficients as each sample
becomes available.

3.2 Discrimination Information (Cross Entropy) Anal-
ysis

Let x(n) be a state of some process that has a set C
of possible states. Let ¥ be the set of all possible prob-
ability densities ¢ on C such that g(xe C)=0 and

[q(x)dx = 1 @)

The entropy of a process with the probability density
q is represented as:
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Elq) = -[q(x)logg(x)dx ©)
c

The entropy is a measure of the amount of informa-
tion produced by a random process x(n), or a measure
of uncertainty in a random process. The larger value of
entropy corresponds to more information (uncertainty)
in the process. The discrimination information (or cross
entropy) is a generalization of entropy when the prior
density p of x(n) is available, and given by:

Hlg,p) = [a(otog( L )av ©)

Eq(6) states that the total amount of information pro-
duced by a process x(r) equals the sum of the amount
of information gained by the posterior (current) density
g and the information already acquired by p. The priors
must be strictly positive, i.e.,

pxe C)>0 (7

The principle of minimum discrimination information
provides a method of inference about a true unknown
probability density g*&C when there exist a prior esti-
mate of g* and new information about ¢* in the form
of constraints on the expected values. I=(g"=®) stands
for the newly acquired information and is referred as a
constraint, and @ is a constraint set. New information I
can take the form of equality and inequality constraints
such that:

| 4" (ex)dx = 0 ®)
C
| 4" ei@)dr 20 ©)

for known sets of bounded constraint functions cy(x)
and c;'(x). Let pEW be an arbitrary prior estimate of
density ¢* prior to learning I. H[g, p] is the informa-
tion-theoretic distortion between densities p and ¢g. It can
also be interpreted as the amount of information-theoretic
distortion provided by I that is not inherent in p.

3.3. Spectral Distortion

One way of quantifying the distortion between a ran-
dom signal x(n) and a predefined pattern vector A is to
use the discrimination information defined in terms of
Itakura-Saito distortion measure [8]. Suppose g and p
signify the probability densities associated with pro-

cesses x(n) and A, respectively. The discrimination informa-
tion functional for Itakura-Saito distortion measure is
given by:

5

Hlq.p] = %{rx(omw) +23 n(s)ra(s)} +log(c)
G =1
(10)
where

S-s
A, S<S
r (s) = EO (1n

0, otherwise

r{s)'s are the autocorrelation functions of x(n) for lags
5s=0,1,...,S. The signal distortion measure in the form of
discrimination information in Eq(10) and Eq(11) are
known to be particularly useful in real-time application
due to their simplicity in computation.

4. Experiment

A series of orthogonal cutting experiments were con-
ducted for GFRP composite materials. The GFRP plate
were 4.0 mm thick with glass yarns of 0.4 mm diameter
arranged approximately 0.8mm apart. The reinforcement
was arranged in the middle of the plate. Constituents of
GFRP are given in Table 1. The workpieces were mounted
on a Rockfort Shaper-Planer equipped with modified
hydraulic system to provide a steady cutting motion.
About 25 mm of the material was exposed for machin-
ing each time. Multi-purpose C2 grade carbide inserts
were used in dry cutting of GFRP. Schematic diagram
of data acquisition and experimental setup is given in
Figure 2. Schematic of the workpieces and relative
angles between the cutting direction and fiber orienta-
tion is also shown in Figure 2.

The force signals were obtained using a three-dimen-
sional circular-type strain gage dynamometer that was

Table 1. Constituents of GFRP used in this study
GFRP
Unsaturated polyester polymal 6304, 6320F

Resi
esm at aratio of 1:1
ECG-75-11/2 3.3 S NA gl f
Reinforcement CG-75 . A glass yam 0
0.4mm diameter
Reinf
ein orcemer.lt 0.85%
Volume Fraction (%)
Post Curing 120 degrees Celcius for 2 hours
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Fig. 2. Designation of angles and schematic diagram of exper-
imental setup.

attached to the tool post. Signals were passed through a
pre-amplifier and sampled using a National Instrument
MC-MIO-16 data acquisition board. Sampling rate was
5000Hz. The sampled signals were stored in a IBM PS/
2 computer for further analysis. AR coefficients were
obtained using MATLab software. The machined sur-
faces were examined by projecting back light on to the
side of the machined workpiece to observe and quantify
the machining damage. Detailed description of the
experimental procedures is given elsewhere [1, 2, 3].

5. Results and Discussion

The cutting stress distribution in the machining zone
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Fig. 3. Sensitivity of AR coefficients to fiber pull-out.

of material dictates not only the type of chip produced
and but also the quality of the surface finish. Fiber pull-
out from the matrix material by fiber-matrix debonding
and matrix stripping significantly affect the surface
quality in cutting GFRP. Specifically, poor surface results
from the fiber pull-out. Depth of fiber pull-out as a
function of fiber orientation angle, tool rake angle and
cutting parameters has been previously observed exper-
imentally [3]. Depth of fiber pull-out observed in our
experiments ranged approximately from 0.1 mm to 0.5
mm for fiber orientation from 60° to 150° rake angle
from -20° to 20°, and 0.051 mm depth of cut. For the
rest of fiber orientation, pull-out depth was minimal.
The sensitivity of AR coefficients to fiber pull-out
was evaluated and shown in Figure 3. Two classes to be
discriminated in this case are “Pull-out” class (“CLASS
34+4+5+6+9+10+11+12”) with pull-out depth larger than
0.1 mm and “No pull-out” class (“CLASS 1+2+7+8")
otherwise. Feature set was selected for maximum sepa-
ration. As the fiber orientation angle increases, shift of
cutting energy to the region slightly above the funda-

Table 2. Experimental conditions for machining GFRP. Depth of cut is 0.051 mm.

Fiber Orientation Angle Cutting Mechanism . Cutting Parameters
Class Fiber Pull-out
(FOA) (degrees) (Type) Cutting Speed (m/min) Rake Angle (degrees)
1 45 I N 3 20
2 45 )i N 6 20
3 90 I Y 3 20
4 90 III Y 6 20
5 135 v Y 3 20
6 135 v Y 6 20
7 45 i N 3,6 0
8 45 111 Y 3,6 -20
9 90 v Y 3,6 0
10 90 v Y 3,6 -20




Characterization of Surface Quality in Orthogonal Cutting of Glass Fiber Reinforced Plastics 5

D
o 0%
204 o
—_ OOoo
e °c 8
E—: 157 LTI
XL ° &
o o® S
101 e no pull-out |
o pull-out |
5 M . - - T
0 20 40 60
Hq,p4]

Fig. 4. Two dimensional plot of H[g, p] for fiber “Pull-out”
and “No fiber pull-out” cases.

mental frequency (particularly in 135° fiber orientation
case) is noted. It may be reasoned that small scaled high
frequency burst signal due to fiber pull-out causes such
energy shift. The spectral peak in this region is, therefore,
a good indication of the onset of fiber pull-out.

The spectral distortion based on Itakura-Saito distor-
tion measure weights the local maxima more heavily
than the local minima. Define the log spectrum of
inverse filter output normalized by a filter gain, i.e.,

2

x(%)

V(G) = log :
6/G(°)

(12)

When V(G)<0, relatively large distortion is generated
due to non-linearity of logarithmic function in Eq(12).
On the contrary, small distortion is made when V(G)>
0. If the energy spectrum is constrained to match the
energy of the other by normalization as in our example,
smaller error contribution can not be introduced by arbi-
trarily placing one spectrum far below the other [8].

What is most important for recognition of physical
phenomena such as fiber pull-out are frequencies, not
the missing frequencies. It is a fundamental tenet of sig-
nal detection that, in a noisy back ground, a frequency
is easier to detect than a missing frequency. The distor-
tion measure in Eq(12) is plotted for fiber “Pull-out”
case and “No pull-out” case in Figure 4. Since the
spectral distortion defined in terms of Itakura-Saito dis-
tortion measure tends to track more accurately the spec-
tral peaks than the spectral valley, good sensitivity is
seen when fiber pull-out is present. Moreover, different
level of fiber pull-out may be attributed to the chip for-
mation mechanism (cutting mechanism). The decision
on the quality of surface can then be made by quanti-

tatively analyzing the AR coefficients of cutting force
model for both cutting mechanism and depth of fiber
pull-out.

6. Conclusions

Frequency analysis based on autoregressive (AR) time
series model of measured force signal in orthogonal cut-
ting of GFRP has been discussed. A strong correlation
between AR coefficients and the surface quality was
also found. Since the spectral distortion based on
Itakura-Saito distortion measure weights the local max-
ima more heavily than the local minima, good sensitiv-
ity between the fiber pull-out and the AR coefficient
was obtained.
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