• Title/Summary/Keyword: Glass fiber contents

Search Result 64, Processing Time 0.023 seconds

An Experimental Study on the Mechanical Properties of Fiber Reinforced Fly Ash.Lime.Gypsum Composites (섬유보강 플라이애쉬.석고.복합체의 역학적특성에 관한 실험적 연구)

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.145-155
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of fiber reinforced fly ash$\cdot$lime$\cdot$gypsum composites are presented in this paper. 'The composites using fly ash, lime, and gypsum were prepared with various fibers (PAN-derived and Pitch-derived carbon fiber, alkali-resistance glass fiber) and a small amount of polymer emulsion-styrene butadiene rubber latex (SBR). As the test results show, the manufacturing process technology of fly ash$\cdot$lime$\cdot$gypsum composites was developed and its optimum mix proportions were successfully proposed. And the flexural strength and toughness of fiber reinforced fly ash$\cdot$lime $\cdot$gypsum composites were increased remarkably by fiber contents, but the compressive strength of the composites were influenced by the kinds fiber more than by the fiber contents. Also, the addition of a polymer emulsion to the composites decreased the bulk specific gravity, but the compressive and flexural strength, and the toughness of the composites were not influenced by it, but were considerably improved by increasing fiber contents.

An Experimental of RC Beams Strengthened with Pultruded Glass Fiber and Steel strip (통기성 유리섬유-강판 인발성형 스트립으로 보강된 RC보의 실험적 거동분석)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.3
    • /
    • pp.315-323
    • /
    • 2013
  • Recently, FRB is being used more as reinforcement of RC beam thanks to its material advantages in construction industry. The external attachment reinforcement of FRP is a construction method with advantages such as high strength, stiffness, excellent durability and construction practicability, despite of its weight. However, the reinforcement has a disadvantage to cause damage on permanent structure as its structure is water-tight by low water permeability reinforcement, preventing water from draining outside. The study attempted flexural failure test for GP of which material properties are equally same as the existing FRP and that with permeability, shows good binding with the concrete structure, durable performance and durability, comparably analyzing the improvement of durability and ductility according to changes of fiber contents of composite strip.

Experimental Study on the Development and Evaluation of Lt.Wt.& High Strength Composites Utilizing By-Products and Calcium Silicates for Construction Materials(1) (산업부산물 및 규산칼슘계 재료를 이용한 건재용 경량.고강도 복합체의 개발.평가에 관한 실험적 연구(기 1))

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.141-152
    • /
    • 1994
  • The results of an experimental study on the development and the evaluation of lightweight and high strength composites utilizing by-products and calcium silicates for construction materials are presented in this paper. The composites using early strength portland cement, by-Products( f1y ash, silica fume), silica powder, quick lime, gypsum, A1 powder and fibers(PAN-derived CF, alkali-resistance GF) were prepared using various mixing conditions. As the test results show, PAN-derived CF and alkali-resistance GF were suitable for rein-forcing fiber of the composites. And the mechanical properties,such as compressive tensile flexural strength, and toughness of Lt. Wt. fiber reinforced calcium silicates cement comp-osites were improved by increasing the fly ash and silica fume contents, and fiber contents, especially by increasing fiber contents the toughness of the composites were remarkably in-creased. Also, compressive tensile flexural strength,and toughness of the composites rein-forcing PAN-derived CF were higher than those of the composites reinforcing alkali-resistance GF..

Effect of Acrylonitrile Content on the Glass Transition Temperature and Melt Index of PVC/SAN Blends

  • Liu Wang;Kim Hwan-Chul;Pak Pyong-Ki;Kim Jong-Chun
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.36-41
    • /
    • 2006
  • PVC and SAN are often mixed to compensate for the disadvantages of each polymer. Miscibility and thermal stability of PVC/SAN blend were investigated in this study by blending SAN polymer having 20, 24, 28, 32 % of acrylonitrile contents. Two polymers were mixed using a melt blending method with a single screw extruder. DSC thermogram was used to evaluate miscibility of the two polymers. SAN having 24 % of acrylonitrile showed the best miscibility with PVC. In order to evaluate degradation behavior, blended polymer was heat treated in DSC furnace and glass transition temperature was measured consecutively. Glass transition temperature increased continuously with annealing time due to degradation and cross-linking of polymer chains. Melt index of blended polymer was always higher than that of PVC.

Study on Water Resistance of Environmentally Friendly Magnesium Oxychloride Cement for Waste Wood Solidification

  • Zhang, Feng-Jun;Sun, Xian-Yang;Li, Xuan;Zhang, Dan;Xie, Wen- Jie;Liu, Jin;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.446-451
    • /
    • 2018
  • In this study, different formulations of magnesium oxide and various modifiers (phosphoric acid, ferrous sulfate, pure acrylic emulsion, silicone acrylic emulsion, glass fiber, and polypropylene fiber) were used to prepare magnesium oxychloride cement composites. The compressive strength of the magnesium oxychloride cement was tested, and the softening coefficients of the composites after soaking in water were also calculated. The results showed that a magnesium oxychloride cement sample could not be coagulated when the MgO activity was 24.3%, but the coagulation effect of the magnesium oxide cement sample was excellent when the MgO activity was 69.5%. While pure acrylic emulsion, silicon-acrylic emulsion, and glass fiber showed insignificant modification effects on the magnesium oxychloride cement, ferrous sulfate heptahydrate, phosphoric acid, and polypropylene fiber could effectively improve its water resistance and compressive strength. When the phosphoric acid, ferrous sulfate heptahydrate, and polypropylene fiber contents were 0.47%, 0.73%, and 0.25%, respectively, the softening coefficient of a composite soaked in water reached 0.93 after 7 days, and the compressive strength reached 64.3 MPa.

Empirical Study for the Effects of Filler Shape on the Thermal Expansion Coefficient of PP Composites (충전제 함량 및 형태에 따른 PP복합체의 열팽창계수 변화에 대한 실증적 연구)

  • Hwang, Hyo-Yeon;Jeoung, Sun-Kyoung;Shim, Je-Hyeon;Kim, Jae-Min;Lee, Kee-Yoon
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.352-356
    • /
    • 2010
  • The effects of the filler shapes and contents on the coefficient of thermal expansion (CTE) for polypropylene (PP) composites which included three dimensional ellipsoids ($a_1>a_2>a_3$), as determined by two aspect ratios (${\rho}_\alpha=a_1/a_3$ and ${\rho}_\beta=a_1/a_2$) were analyzed by the theoretical approach proposed by Lee and Paul and compared with the experimental results. The shapes of fillers in the composites were various, such as spherical, fiber, disc, and ellipsoid, using barium sulfate, glass fiber, and mica. The longitudinal CTE of barium sulfate whose shape was sphere ($\rho_\alpha=\rho_\beta=1$) decreased. For the glass fiber, primary aspect ratio decreased with the filler content, and longitudinal CTE decreased as filler contents increased. Normal CTE initially increased in the lower filler content. For the mica, longitudinal and transverse CTE decreased but normal CTE increased in the lower filler content like predicted values.

Study on the Polymer Gel Fiber of Alkali Resistance Zirconia System for GRC (GRC 제조용 내알칼리성 지르코니아계 고분자 겔섬유에 관한 연구)

  • 신대용;한상목;김경남;강위수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.934-940
    • /
    • 1994
  • Fibers of ZrO2-SiO2 system were prepared from the hydrolysis and condensation of Si(OC2H5)4 and Zr(OnC3H7)4 with different H2O/alkoxide molar ratios. It was found that fibers could be drawn in the viscosity range of 1~100 poise from HCl catalyzed solutions with lower water contents of the mole ratio H2O/alkoxide, r 2. The fibrous gels were converted into the corresponding oxide glass fibers by heating at 80$0^{\circ}C$. Mechanical test was performed on E, A and 20ZrO2-80SiO2 glass fibers reinforced cement in order to investigate the flexural strength. The flexural strength value of 20ZrO2-80SiO2 glass fibers reinforced cement was greater than those of E and A. The chemical durability of the fibers in alkaline solutions increased with ZrO2 content. The weight loss due to the corrosion by 2N-NaOH solutions at $25^{\circ}C$ for 160 hours was about 0.31$\times$10-2 mg/dm2 for the 20ZrO2-80SiO2 glass fibers, which was superior to that of Vycor glass.

  • PDF

Effect of Inorganic Fillers on the Dimensional Stability of Poly(ethylene naphthalate) Film as a Flexible Substrate (무기 필러가 유연기판용 폴리에틸렌나프탈레이트 필름 치수안정성에 미치는 영향)

  • Kim, Jongwha;Kim, Hongsuk;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.733-738
    • /
    • 2012
  • The effect of glass bead and glass fiber on the enhancement of dimensional stability in poly(ethylene naphthalate) (PEN) flexible substrate for photovoltaic devices has been studied. It was found that the coefficient of thermal expansion (CTE) and the optical transmittance decreased with increasing inorganic filler content. In addition to filler contents, the size and size distribution of fillers are the other important factors to improve CTE and optical transmittance of PEN film. Our results showed that the optimum filler content was found to be about 5 wt% to enhance the dimensional stability of PEN by more than 50% with maintaining the optical transmittance over 85% for the flexible substrate.

Study on the Tribo-Characteristics of Tin-Bronze Matrix Material for Brake Pad (Brake Pad용 청동기지 복합재료의 마찰.마모특성에 관한 연구(I))

  • Song, Geon;Hwang, Soon-Hong;Kong, Ho-Sung;Choi, Woong-Soo;Cheong, Dong-Yun;Huh, Moo-Young
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.18-27
    • /
    • 1996
  • An interlaboratory wear testing was performed in order to understand the friction behaviors and the wear mechanisms of the sintered composites. The specimens were the sintered bronze matrix composites having various contents of friction additives, friction control agents and reinforcements. The variation of the wear characteristics according to the constituents of the composites as well as the wear conditions was investigated by SEM, EPMA, OM, the hardness testing and the measurement of friction. The specimen having glass fiber as the matrix reinforcement showed a remarkable increase in wear resistance as increasing the content of glass fiber. Graphite particles in the composites exhibited the lubricating effect and also resulted in the lowering strength of the matrix. Addition of Mo powder to the composites led to the deterioration of wear properties at the room temperature, however, an enhanced wear properties were obtained in the containing Mo at an elevated temperature.

Study the effect of machining process and Nano Sio2 on GFRP mechanical performances

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, the effect of Nano silica (SiO2) on the buckling strength of the glass fiber reinforced laminates containing the machining process causes holes were investigated. The tests have been applied on two status milled and non-milled. To promote the mechanical behavior of the fiber-reinforced glass epoxy-based composites, Nano sio2 was added to the matrix to improve and gradation. Nano sio2 is chosen because of flexibility and high mechanical features; the effect of Nanoparticles on surface serenity has been studied. Thus the effect of Nanoparticles on crack growth and machining process and delamination caused by machining has been studied. We can also imply that many machining factors are essential: feed rate, thrust force, and spindle speed. Also, feed rate and spindle speed were studied in constant values, that the thrust forces were studied as the main factor caused residual stress. Moreover, entrance forces were measured by local calibrated load cells on machining devices. The results showed that the buckling load of milled laminates had been increased by about 50% with adding 2 wt% of silica in comparison with the neat damaged laminates while adding more contents caused adverse effects. Also, with a comparison of two milling tools, the cylindrical radius-end tool had less destructive effects on specimens.