DOI QR코드

DOI QR Code

Effect of Inorganic Fillers on the Dimensional Stability of Poly(ethylene naphthalate) Film as a Flexible Substrate

무기 필러가 유연기판용 폴리에틸렌나프탈레이트 필름 치수안정성에 미치는 영향

  • Kim, Jongwha (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University) ;
  • Kim, Hongsuk (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University) ;
  • Kang, Ho-Jong (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University)
  • 김종화 (광 에너지 소재 연구센터, 단국대학교 고분자시스템공학과) ;
  • 김홍석 (광 에너지 소재 연구센터, 단국대학교 고분자시스템공학과) ;
  • 강호종 (광 에너지 소재 연구센터, 단국대학교 고분자시스템공학과)
  • Received : 2012.05.27
  • Accepted : 2012.07.10
  • Published : 2012.11.25

Abstract

The effect of glass bead and glass fiber on the enhancement of dimensional stability in poly(ethylene naphthalate) (PEN) flexible substrate for photovoltaic devices has been studied. It was found that the coefficient of thermal expansion (CTE) and the optical transmittance decreased with increasing inorganic filler content. In addition to filler contents, the size and size distribution of fillers are the other important factors to improve CTE and optical transmittance of PEN film. Our results showed that the optimum filler content was found to be about 5 wt% to enhance the dimensional stability of PEN by more than 50% with maintaining the optical transmittance over 85% for the flexible substrate.

광전소자용 유연기판으로 사용되는 폴리에틸렌나프탈레이트 필름의 치수안정성 향상을 위하여 첨가된 유리 비드와 유리 섬유가 필름의 열팽창계수와 광투과도에 미치는 영향을 살펴보았다. 첨가된 무기 필러의 함량이 증가할수록 열팽창계수와 광투과도가 감소함을 알 수 있었다. 무기 필러의 크기, 입도 분포 또한 유연기판의 치수안정성과 광투과도에 영향을 미치는 주요한 요인임을 확인할 수 있었다. 본 연구 결과, 유연기판으로 사용 가능한 85% 이상의 광투과도를 유지하면서 폴리에틸렌나프탈레이트의 고유 치수안전성을 50% 이상 감소시키는 무기 필러의 함량은 5 wt% 내외임을 알 수 있었다.

Keywords

Acknowledgement

Grant : 적층형 차세대 유기태양전지 소재 및 소자 개발

Supported by : 지식경제부

References

  1. S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barna, J. Appl. Phys., 54 3497 (1983). https://doi.org/10.1063/1.332415
  2. S. Takaki, K. Matsumoto, and K. Suzuki, Appl. Surf. Sci., 33, 919 (1988). https://doi.org/10.1016/0169-4332(88)90399-6
  3. H. Lim, C. M. Bae, Y. K. Kim, C. H. Park, W. J. Cho, and C. S. Ha, Synth. Met., 135, 49 (2003). https://doi.org/10.1023/A:1022945916989
  4. H. J. Park, J. W. Park, S. Y. Jeong, and C. S. Ha, Proc. IEEE, 93, 1447 (2005). https://doi.org/10.1109/JPROC.2005.851487
  5. M. Ishikawa, Polymer, 36, 2203 (1995). https://doi.org/10.1016/0032-3861(95)95297-E
  6. A. Toyota and M. Yamaguchi, Polym. Mater. Sci. Eng., 76, 24 (1997).
  7. J. Kim, I. Kim, Y. K. Kim, and H. J. Kang, Polymer(Korea), 34, 1 (2010).
  8. Y. S. Chun, Y. S. Han, J. C. Hyun, and W. N. Kim, Polymer, 41, 8717 (2000). https://doi.org/10.1016/S0032-3861(00)00301-3
  9. R. S. Porter and L. H. Wang, Polymer, 33, 2019 (1992). https://doi.org/10.1016/0032-3861(92)90866-U
  10. E. Andresen and G. Zachmann, Colloid Polym. Sci., 272, 1352 (1994). https://doi.org/10.1007/BF00654165
  11. M. Suzuki, K. Sato, and M. Umeda, U S Patent 5,837, 800 (1998).
  12. H. Yano, J. Sugiyama, A. Nakagaito, M. Nogi, T. Matsuura, M. Hikita, and K. Handa, Adv. Mater., 17, 154 (2005).
  13. R. Hill, J. Mech. Phys. Solids, 12, 199 (1964). https://doi.org/10.1016/0022-5096(64)90019-5
  14. J. C. Halpin, Primer on Composite Materials Analysis, Technomic Pub. Co. Inc., Lancaster, 1992.
  15. G. P. Tandon and G. J. Weng, Polym. Composite, 5, 327 (1984). https://doi.org/10.1002/pc.750050413
  16. K. Y. Lee, K. H. Kim, S. K. Jeoung, S. I. Ju, J. H. Shim, N. H. Kim, S. G. Lee, S. M. Lee, J. K. Lee, and D. R. Paul, Polymer, 48, 4174 (2007). https://doi.org/10.1016/j.polymer.2007.05.036
  17. K. Y. Lee, S. R. Hong, S. K Jung, N. H. Kim, S. G Lee, and D. R. Paul, Polymer, 49, 2146 (2008). https://doi.org/10.1016/j.polymer.2008.02.025