Browse > Article

Empirical Study for the Effects of Filler Shape on the Thermal Expansion Coefficient of PP Composites  

Hwang, Hyo-Yeon (Department of Polymer Science and Engineering, Chungnam National University)
Jeoung, Sun-Kyoung (Korea Automotive Technology Institute)
Shim, Je-Hyeon (LG Chem., Ltd.)
Kim, Jae-Min (Department of Polymer Science and Engineering, Chungnam National University)
Lee, Kee-Yoon (Department of Polymer Science and Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.34, no.4, 2010 , pp. 352-356 More about this Journal
Abstract
The effects of the filler shapes and contents on the coefficient of thermal expansion (CTE) for polypropylene (PP) composites which included three dimensional ellipsoids ($a_1>a_2>a_3$), as determined by two aspect ratios (${\rho}_\alpha=a_1/a_3$ and ${\rho}_\beta=a_1/a_2$) were analyzed by the theoretical approach proposed by Lee and Paul and compared with the experimental results. The shapes of fillers in the composites were various, such as spherical, fiber, disc, and ellipsoid, using barium sulfate, glass fiber, and mica. The longitudinal CTE of barium sulfate whose shape was sphere ($\rho_\alpha=\rho_\beta=1$) decreased. For the glass fiber, primary aspect ratio decreased with the filler content, and longitudinal CTE decreased as filler contents increased. Normal CTE initially increased in the lower filler content. For the mica, longitudinal and transverse CTE decreased but normal CTE increased in the lower filler content like predicted values.
Keywords
coefficient of thermal expansion; aspect ratio; PP composite; filler;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 G. P. Tandon and G. J. Weng, Polym. Compos., 5, 327 (1984).   DOI   ScienceOn
2 J. D. Eshelby, Proc. Roy. Soc. Lond., A241(1226) ,376 (1957).
3 R. Hill, J. Mech. Phys. Solids, 12, 199 (1964).   DOI   ScienceOn
4 H. S. Lee, P. D. Fasulo W. R. Eodgers, and D. R. Paul, Polymer, 46, 11673 (2005).   DOI   ScienceOn
5 R. A. Schapery, J. Compos. Mater., 2, 380 (1968).   DOI
6 K. Wakashima, M. Otsuka, and S. Umekawa, J. Compos. Mater., 8, 391 (1974).   DOI   ScienceOn
7 T. Mori and K. Tanaka, Acta Metall., 21, 571 (1963).
8 J. C. Halpin, Primer on Composite Materials Analysis, Technomic Pub. Co. Inc., Lancaster, 1992.
9 J. M. Margolis, Advanced Thermoset Composites Industrial and Commercial Applications, Van Nostrand Reinhold Co., NY, 1986.
10 P. J. Yoon, T. D. Fornes, and D. R. Paul, Polymer, 43, 6727 (2002).   DOI   ScienceOn
11 D. V. Howe and J. E. Mark, Polymer data handbook, Oxford University Press, Oxford, 1999.
12 T. Mura, Micromechanics of Defects in Solids, 2nd Ed., The Hague, Martinus Nijhoff, p 74 (1987).
13 T. S. Chow, J. Polym. Sci. Polym. Phys., 16, 967, (1978).   DOI   ScienceOn
14 G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook, Cambridge University Press, Cambridge, 1998.
15 C. L. Tucker and E. Liang, Compos. Sci. Technol., 59, 655 (1999).   DOI   ScienceOn
16 K. Y. Lee and D. R. Paul, Polymer, 46, 9064 (2005).   DOI   ScienceOn
17 K. Y. Lee, K. H. Kim, S. K. Jeoung, S. I. Ju, J. H. Shim, N. H. Kim, S. G. Lee, S. M. Lee, J. K. Lee, and D. R. Paul, Polymer, 48, 4174 (2007).   DOI   ScienceOn
18 K. Y. Lee, S. R. Hong, S. K. Jeoung, N. H. Kim, S. G. Lee, and D. R. Paul, Polymer, 49, 2146 (2008).   DOI   ScienceOn
19 J. M. Kim, S. K. Jeoung, J. H. Shim, H. Y. Hwang, and K. Y. Lee, Polymer(Korea), 34, 346 (2010).   과학기술학회마을