• 제목/요약/키워드: Glass edge

검색결과 173건 처리시간 0.03초

발광형 태양광 집광기 최신 연구 동향 (Recent Progress and Prospect of Luminescent Solar Concentrator)

  • 송형준
    • 한국태양에너지학회 논문집
    • /
    • 제39권4호
    • /
    • pp.25-39
    • /
    • 2019
  • Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to reach edge or bottom mounted photovoltaic cells with reduced losses. If the area of LSC is much larger than that of photovoltaic cell, this system can effectively concentrate solar light. In order to improve the performance of LSC, new materials and optical structures have been suggested by many research groups. For decreasing re-abosprion losses, it is essential to minimize the overlap between absorption and photoluminescence solar spectrum of luminophoroe. Moreover, the combination of selective top reflector and reflective optical cavity structure significantly boosts the waveguide efficiency in the LSC. As a result of many efforts, commercially available LSCs have been demonstrated and verified in the outdoor. Also, it is expected to generate electricity in buildings by replacing conventional glass to LSCs.

다물체 동역학 해석을 이용한 커버글라스 Edge 연마용 Abrasive Film Polishing 시스템 개발 (Development of Abrasive Film Polishing System for Cover-Glass Edge using Multi-Body Dynamics Analysis)

  • 하석재;조용규;김병찬;강동성;조명우;이정우
    • 한국산학기술학회논문지
    • /
    • 제16권10호
    • /
    • pp.7071-7077
    • /
    • 2015
  • 최근 스마트폰, 태블릿 PC 및 전자기기 등의 사용이 증가함에 따라 커버글라스의 수요가 증가하고 있는 추세이다. 모바일 기기의 디스플레이가 대형화되면서 접촉이나 낙하 등과 같이 외부에서 힘을 받게 되는 환경에서 높은 강도를 유지하는 것이 요구되고 있다. 커버글라스 제작 공정에서 연마공정은 커버글라스의 표면거칠기 및 충분한 강도를 제공하는 중요한 공정이다. 기존 연삭 숫돌에 의한 가공방법은 커버글라스 가공표면에 스크레치, 칩핑, 노칭 및 마이크로 크랙 등의 가공 문제점이 발생한다. 따라서 본 연구에서는 모바일 커버글라스의 연마를 위해 연마필름을 이용한 폴리싱 시스템을 개발하였다. 구조적 안정성을 평가하기 위해 연마 필름 폴리싱 시스템에 대한 유한요소모델을 생성하였고 다물체 동역학 해석을 수행하였다. 연마 필름 폴리싱 시스템에 대한 응력 및 변위 해석을 통해 특성을 분석하였고 레이저 변위 센서를 이용해 제작된 시스템에 대한 변위를 측정하여 구조적 안정성에 대해 확인하였다.

FRACTURE TOUGHNESS OF VARIOUS CORE MATERIALS

  • Lee Shin-Won;Lee Sun-Hyung;Yang Jae-Ho;Han Jung-Suk;Lee Jai-Bong
    • 대한치과보철학회지
    • /
    • 제39권6호
    • /
    • pp.682-697
    • /
    • 2001
  • This investigation evaluated the fracture toughness($K_{IC}$) of eight currently available core materials, and relate the fracture toughness value to fractography analysis and surface characteristics using a atomic force microscope (AFM). Single-edge notched (SEN) test specimens (n=10) and compact tension (CT) test specimens (n=10) were prepared conforming to the ASTM Standard E-399 for a high copper amalgam, three composite core materials (Core-Max II, Core Paste, Bisfil Core), two reinforced composite core materials (Ti-Core, Ti-Core Natural), a resin-modified glass ionomer core material (Vitremer), and a conventional glass ionomer core material (Ketac-Molar). The specimens were tested with an Instron Universal Testing Machine. The maximum loads were measured to calculate the fracture toughness ($K_{IC}$). Thereafter, fracture surfaces of SEN specimens of each material were investigated for fractography analysis using scanning electron microscope. And, disc-shaped specimens with 1mm thickness were fabricated for each material and were investigated under AFM for surface morphology analysis. The results were as follows: 1. Bisfil Core showed the highest mean fracture toughness regardless of test methods. 2. For the tooth-colored materials, Ti-Core Natural exhibited the highest fracture toughness. 3. Ketac Molar showed a significantly low fracture toughness when compared with the amalgam and the composite resin core materials(p<0.05). 4. The fracture toughness values obtained with the single-edge notched test, except Ketac Molar, were higher than those obtained in the compact tension test. 5. SEM revealed that the fracture surface of high fracture toughness material was rougher than that of low fracture toughness material. 6. AFM revealed that the surface particles of the composite resins were smaller in size, with a lower surface roughness than the glass ionomer core materials.

  • PDF

원공을 가진 Glass/Epoxy 복합재료의 노치강도 및 파괴조건 (Notched Strength and Fracture Criterion of Glass/Epoxy Plain Woven Composites Containing Circular Holes)

  • 김정규;김도식
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1285-1293
    • /
    • 1992
  • 본 연구에서는 glass/epoxy 직조된 복합재료에 있어서 원공 및 판폭의 크기가 노치강도에 미치는 영향을 명확히 하고, 또한 노치강도 및 파괴조건과 위에서 언급한 특성길이와의 관계를 검토하였다.

Glass Lens 성형용 초경합금(Co 0.5%)의 초정밀 절삭특성 (The property of WC(Co 0.5%) Ultra precision turning for Glass Lens molding)

  • 김민재;이준기;김태경;황연;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.41-41
    • /
    • 2010
  • In this research, to study tungsten carbide alloy(Co 0.5%) ultra precision turning possibility that is used Glass Molding Press(GMP) using conventional (Rake angle $-25^{\circ}$) single crystal diamond bite observed machining surface condition, surface roughness($R_a$), diamond bite cutting edge after tungsten carbide alloy ultra precision turning. Suggested and designed optimum chamfer bite shape to suggest ultra precision optimum bite using Finite Element Analysis(FEM). After machining tungsten carbide alloy ultra precision turning using optimum chamfer bite and comparing with conventional bite machine result and studied optimum chamfer bite design inspection and also tungsten carbide ultra precision turning possibility for high temperature compression glass lens molding.

  • PDF

초음파 절단기에 의한 유리 절단면의 상태에 관한 실험적 검토 (Experimental Study on Cutting State of Glass by Ultrasonic Scriber)

  • 이채봉
    • 융합신호처리학회논문지
    • /
    • 제6권4호
    • /
    • pp.212-216
    • /
    • 2005
  • 본 논문은 초음파를 이용한 유리 절단기를 개발하고 실험적으로 최적의 구동 주파수를 조사하였으며 유리 절단기의 효과에 대하여 검토하였다. 효과를 분석하기 위해 유리 절단기 시스템의 이론적 모델을 제시하였다. 그리고 시스템에서 최대 가속도 진폭의 주파수를 이론적으로 구하였다. 주어진 시료에 대해 절단면의 최대 깊이를 실험적으로 조사하였으며 사용한 시료는 석영유리($200mm(L){\times}30mm(W){\times}3mm(T)$)로 일정 가속도 진폭으로 모든 주파수에 대해 초음파 진동자를 구동하였다. 적정한 구동 주파수의 효과를 실험적으로 검토한 결과, 유리판에서 메디안 크랙의 깊이를 최대화하는 최적 주파수는 18.35kHz로 나타났다. 이러한 결과는 이론적 모델로 제시한 시스템의 계산 결과와 매우 일치하였다.

  • PDF

곡면 커버 글라스용 금형 코팅을 위한 CVD-SiC 기반 세라믹 복합체의 두께에 따른 특성 연구 (Thickness Dependence of CVD-SiC-Based Composite Ceramic for the Mold of the Curved Cover Glass)

  • 김경호;정성민;이명현;배시영
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.310-315
    • /
    • 2019
  • The use of a silicon carbide (SiC)-based composite ceramic layer for the mold of a curved cover glass was demonstrated. The stress of SiC/VDR/graphite-based mold structure was evaluated via finite element analysis. The results revealed that the maximum tensile stress primarly occured at the edge region. Moreover, the stress can be reduced by employing a relatively thick SiC coating layer and, therefore, layers of various thicknesses were deposited by means of chemical vapor deposition. During growth of the layer, the orientation of the facets comprising the SiC grain became dominant with additional intense SiC(220) and SiC(004). However, the roughness of the SiC layer increased with increasing thickness of the layer and. Hence, the thickness of the SiC layer needs to be adjusted by values lower than the tolerance band of the curved cover glass mold.

MR Fluid Polishing을 이용한 커버글래스 측면 연마 조건 최적화에 관한 기초 연구 (A Study on the Optimization of MR Fluid Polishing Conditions for Cover Glass Edge)

  • 정재화;김병찬;홍광표;조명우
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.42-45
    • /
    • 2017
  • Currently, the mobile device is required to be miniaturized and lightweight according to the needs of the consumer. For this purpose, each part is produced and assembled in units of modules. Accordingly, the display part is also composed of a cover glass, a touch screen, And it costs a large amount to replace the whole when it is damaged. Therefore, we propose a method to improve the durability of display part using ANOVA (Analysis of Variance) and MR fluid polishing. Before MR fluid polishing process, surface treatment was performed to obtain a polishable surface. A series of experiments were carried out to very fine surface roughness and to secure durability of cover glass. Polishing depth, feed rate, and abrasive size were selected to examine the MR fluid polishing results.

Glass ionomer cement 표면의 산부식 효과에 관한 연구 (THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES)

  • 한승원;박상진;민병순;최호영;최기운
    • Restorative Dentistry and Endodontics
    • /
    • 제18권1호
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

An Investigation on Gridline Edges in Screen-Printed Crystalline Silicon Solar Cells

  • Kim, Seongtak;Park, Sungeun;Kim, Young Do;Kim, Hyunho;Bae, Soohyun;Park, Hyomin;Lee, Hae-Seok;Kim, Donghwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.490.2-490.2
    • /
    • 2014
  • Since the general solar cells accept sun light at the front side, excluding the electrode area, electrons move from the emitter to the front electrode and start to collect at the grid edge. Thus the edge of gridline can be important for electrical properties of screen-printed silicon solar cells. In this study, the improvement of electrical properties in screen-printed crystalline silicon solar cells by contact treatment of grid edge was investigated. The samples with $60{\Omega}/{\square}$ and $70{\Omega}/{\square}$ emitter were prepared. After front side of samples was deposited by SiNx commercial Ag paste and Al paste were printed at front side and rear side respectively. Each sample was co-fired between $670^{\circ}C$ and $780^{\circ}C$ in the rapid thermal processing (RTP). After the firing process, the cells were dipped in 2.5% hydrofluoric acid (HF) at room temperature for various times under 60 seconds and then rinsed in deionized water. (This is called "contact treatment") After dipping in HF for a certain period, the samples from each firing condition were compared by measurement. Cell performances were measured by Suns-Voc, solar simulator, the transfer length method and a field emission scanning electron microscope. According to HF treatment, once the thin glass layer at the grid edge was etched, the current transport was changed from tunneling via Ag colloids in the glass layer to direct transport via Ag colloids between the Ag bulk and the emitter. Thus, the transfer length as well as the specific contact resistance decreased. For more details a model of the current path was proposed to explain the effect of HF treatment at the edge of the Ag grid. It is expected that HF treatment may help to improve the contact of high sheet-resistance emitter as well as the contact of a high specific contact resistance.

  • PDF