• Title/Summary/Keyword: Glass composites

Search Result 910, Processing Time 0.026 seconds

A study on fatigue properties of GFRP in synthetic sea water (인공해수중 GFRP의 피로특성에 관한 연구)

  • 김연직;임재규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1351-1360
    • /
    • 1993
  • The fatigue behavior of GFRP composites is affected by environmental parameters. Therefore, we have to study on effect of sea water on fatigue behavior of GFRP composites as to maintain the safety and confidence in design of ocean structure of GFRP. In this paper, we investigated the fatigue properties of chopped strand glass mat/polyester composite in synthetic sea water. (pH 8.2) In case of the glass fiber (CSM type) reinforced polyester composite materials, the fatigue crack in the both dry and wet specimens tested in air or synthetic sea water occurred at the initial of cycle. Thereafter, it was divided with two regions that one decreased with the crack extension and the other increased with the crack extension. The transition point occurred during the crack propagation shifted to high ${\Delta}K$ value as load increase but its point is not changed regardless of immersion or test environment under a constant load. The synthetic sea water degrades the bond strength between fiber and matrix, thereby the tendency of rapid deceleration and acceleration of the crack growth was appeared.

Thermoelectric Composites Based on Carbon Nanotubes and Micro Glass Bubbles (탄소나노튜브 및 마이크로 글래스 버블 기반 열전 복합재)

  • Kang, Gu-Hyeok;Seong, Kwangwon;Kim, Myungsoo;Kim, In Guk;Bang, In Cheol;Park, Hyung Wook;Park, Young-Bin
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.70-74
    • /
    • 2015
  • In this paper, carbon nanotubes (CNTs) and micro glass bubbles (GBs) have been incorporated into a polyamide6 (PA6) matrix to impart thermoelectric properties. The spaces created in the matrix by GBs allows the formation of "segregated" CNT network. The tightly bound CNT network, if controlled properly, can serve as a conductive path for electron transport, while prohibiting phonon transport, which would provide an ideal configuration for thermoelectric applications. The CNTs and GBs were dispersed in a nylon-formic acid solution using horn sonication followed by coagulation in deionized water, and nanocomposite panels were fabricated using a hot press. The performance of nanocomposite panels was evaluated from thermal and electrical conductivities and Seebeck coefficient, and a thermoelectric figure of merit as high as 0.016 was achieved.

Comparison of Interfacial Aspects of Carbon and Glass Fibers/Epoxy Composites by Microdroplet Tests at Low and Room Temperatures (상온 및 저온에서의 탄소와 유리섬유/에폭시 복합재료의 계면특성 비교)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Kim, Myung-Soo;Park, Joung-Man;Um, Moon-Kwang
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.162-168
    • /
    • 2009
  • As a preliminary study of optimum composite properties under cryogenic temperature, the comparison of interfacial properties of carbon or glass fibers reinforced epoxy composites was evaluated at ambient and intermediate low temperature, i.e., 25 and $-10^{\circ}C$ by using micromechanical techniques. Under tensile and compressive loading conditions, their mechanical modulus at low temperature was higher than that atambient temperature. Interfacial shear strength (IFSS) at ambient and low temperatures was compared to each other, depending on epoxy matrix toughness and apparent modulus at the interface. The IFSS was much higher at low temperature than that at room temperature because of the increased epoxy matrix modulus. Statistical distributions of tensile strengths of glass and carbon fibers were evaluated for different temperature ranges, which is dependent upon fiber's inherent flaws and rigidity.

  • PDF

Mode II Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Types of Non-woven Tissues (종류가 다른 부직포가 삽입된 하이브리드 복합재료의 모드 II 층간파괴인성)

  • Jeong, Jong-Seol;Cheong, Seong-Kyun
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.141-145
    • /
    • 2013
  • The mode II interlaminar fracture toughness was evaluated for CFRP laminates with different types of nonwoven tissues and the source of increased mode II interlaminar fracture toughness was examined by SEM analysis in this paper. The interlaminar fracture toughness in mode II is obtained by an end notched flexure test. The experiment is performed using three types of non-woven tissues: 8 $g/m^2$ of carbon tissue, 10 $g/m^2$ of glass tissue, and 8 $g/m^2$ of polyester tissue. On the basis of the specimen with no non-woven tissue, interlaminar fracture toughness on mode II at specimens inserted with non-woven carbon and glass tissues and polyester tissues increases as much as 166.5% and 137.1% and 157.4% respectively. The results show that mode II interlaminar fracture toughness of CFRP laminates inserted with nonwoven tissues increased due to the fiber bridging, fiber breakage, and hackle etc. by SEM analysis.

A study on the forming condition of a bone plate made of a glass/polypropylene composite (Twintex) (유리섬유/폴리프로필렌 복합재료 (Twintex)를 이용한 고정판 성형조건에 관한 연구)

  • Park, Seok-Won;Yoo, Seong-Hwan;Lee, Jae-Eung;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.55-60
    • /
    • 2010
  • In this paper, tensile and bending tests of glass/polypropylene composite (Twintex) specimens fabricated by various forming conditions were carried out and the results were compared according to the forming conditions to find the appropriate condition for the forming composite bone plates. From the tests it was found that the most appropriate forming conditions were $230^{\circ}C$, 3MPa. Composite bone plates were formed using this condition by two different fabricating methods for screw holes: one was a net shape molding and the other was drilling. The forming and bending tests revealed that the drilling process provided much better bending stiffness of bone plates. This paper provided the most appropriate condition for forming composite bone plates and this result was also expected to offer informative data on forming of other Twintex structures.

Fabrication and Characterization of Carbon Fiber Reinforced (탄소섬유강화 유리복합재료의 제조 및 특성분석)

  • Cho, H.S.;Kim, S.D.;Cho, H.J.;Kong, S.S.;Choi, W.B.;Baek, Y.K.;Kim, H.J.;Kim, H.
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.601-608
    • /
    • 1992
  • We investigated the influence of several processes, including the preparation of slurry and preform and the heat-treatment of the preform, on the properties of composites to fabricate the carbon-fiber reinforced glass composites having good mechanical properties. Cerander was determined to be the best binder among Cerander, Rhoplex and Elvacite 2045 by the dipping test and the binder within a preform could be completely eliminatd by burning out the specimen under 10-6 Torr at 400$^{\circ}C$ for more than 1h. The fracture behavior of a composite was largely dependent on the uniformity of carbon-fiber distribution within the composite and the heat-treatment condition of the composite. The higher the glass content, the more difficult to obtain uniform distribution of carbon-fiber. As the hot-pressing temperature increased, the densification process of the composite and the formation of pore due to oxidation of carbon fiber occurred competitively. But, above 1000$^{\circ}C$ the latter played a predominant role. We could fabricated the densest 15 vol.% carbon-fiber-content glass composite having the highest toughness and flexural strength of 250 MPa by hot-pressing under 15 MPa at 900$^{\circ}C$ for 30 min.

  • PDF

Estimation for Adaptability of Fiber Reinforced Plastic Composite for LNG Storage Tank (유리섬유강화 플라스틱의 LNG 저장탱크용 합판 대체 가능성 평가)

  • Kim S. B.;Cho J. M.;Cho S. H.;Kwon Y. S.
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.28-32
    • /
    • 2003
  • In order to apply the properties of fiber reinforced plastic(FRP) to support panel of polyurethane foam in LNG storage tank, we estimated the mechanical properties, degree of vapour barrier, chemical stability and thermal conductivity changes as ageing. According to the results, the mechanical strength (i.g. compressive strength, bending strength, tensile strength and shear strength) are more than 30 times higher than those of plywood. The FRP-polyurethane foam(PUF) composites have lower thermal conductivity changes as ageing than plywood-PUF composites. FRP-PUF sandwich composite for LNG storage tank with these remarkable properties are compared the abilities of these structures with those of the conventional structures(plywood-PUF sandwich composite). Finally, we can obtain the effects such as superior mechanical properties and fuel saving through improved ability of vapor barrier.

  • PDF

Assessment of flowing ability of self-compacting mortars containing recycled glass powder

  • Alipour, Pedram;Namnevis, Maryam;Tahmouresi, Behzad;Mohseni, Ehsan;Tang, Waiching
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.65-76
    • /
    • 2019
  • This paper investigates the effect of recycled glass powder (RGP) on flowing properties of self-compacting mortars (SCMs) containing different ratios of fillers and superplasticizer dosages. Fly ash (FA), nano-silica (NS), micro-silica (MS), metakaolin (MK) and rice husk ash (RHA) are used as fillers and their synergistic effect with RFP is studied. The effects of fillers and high-range water reducer (HRWR) on flowing ability of mortars are primarily determined by slump flow and V-funnel flow time tests. The results showed that for composites with a higher RGP content, the mortar flowing ability increased but tended to decrease when the composites containing 10% MK or 5% RHA. However, the flowing ability of samples incorporating 5% RGP and 10% SF or 25% FA showed an opposite result that their slump flow spread decreased and then increased with increasing RGP content. For specimens with 3% NS, the influence of RGP content on flowing properties was not significant. Except RHA and MS, the fillers studied in this paper could reduce the dosage of HRWR required for achieving the same followability. Also, the mixture parameters were determined and indicated that the flowability of mixtures was also affected by the content of sand and specific surface area of cement materials. It is believed that excess fine particles provided ball-bearing effect, which could facilitate the movement of coarse particles and alleviate the interlocking action among particles. Also, it can be concluded that using fillers in conjunction with RGP as cementitious materials can reduce the material costs of SCM significantly.

Effect of Textile Pattern on Mechanical and Impregnation Properties of Glass Fiber/Thermoplastic Composite (유리 섬유/열가소성 복합 재료의 기계적 및 함침 특성에 대한 직물 패턴의 영향)

  • Kim, Neul-Sae-Rom;Lee, Eun-Soo;Jang, Yeong-Jin;Kwon, Dong-Jun;Yang, Seong Baek;Yeom, Jung-Hyun
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.317-322
    • /
    • 2018
  • In various industry, the composite is tried to be applied to products and thermoplastic based composite is in the spotlight because this composite can be recycled. The use of continuous fiber thermoplastic (CFT) method increased gradually than long fiber thermoplastic (LFT). In this study, tensile, flexural, and impact test of different array types of glass fiber (GF)/thermoplastic composites were performed to compare with GF array. Impregnation property between GF mat and thermoplastic was determined using computed tomography (CT). At CFT method, thermoplastic film is not wet into GF roving and many voids are appeared into composite. This phenomenon affects to decrease mechanical properties. Plain pattern GF mat was the best mechanical and impregnation properties that distance between two roving was set closely to $100{\mu}m$.

Synthesis of Polyurethane Foam/Organonanoclay/Phosphates Composites and its Characterization (폴리우레탄폼/유기나노점토/포스페이트 복합체의 합성과 그 특성)

  • Park, Kyeong-Kyu;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.343-351
    • /
    • 2011
  • We prepared polyurethane foam/cloisite30B/phosphates composites and characterized their rise time, density, cell morphology, and thermal properties. The composites were synthesized with polyadipatediol-cloisite30B composite (f=2.0), polyether-polyol (f=4.6), polymeric 4,4-diphenyl methane diisocyanate (f=2.5), and D-580 (phenyl polyoxyalkenyl phosphate). As a blowing agent, cyclopentane and distilled water were used at various concentrations of D-580 from 0 to 2.81 wt%. The rise times of PUF/Closite30B/Phosphate composites blown with distilled water were faster than those blown with cyclopentane by 30%. The composites blown with cyclopentane had spherical-shape cells and the cell diameter was decreased with increasing D-580 wt%. While $T_g$ of the composites blown with cyclopentane linearly decreased with increasing the D-580 content, the $T_g$ of the composites blown with distilled water increased with the D-580 content. All PUF/Closite30B/Phosphate composites began to decompose from $250^{\circ}C$. The composites blown with cyclopentane showed the second thermal decomposition at temperatures higher than $500^{\circ}C$. The thermal stability of all composites increased with the D-580 content. The effect of D-580 on the thermal stability of the composites was measured higher at the composites blown with distilled water.