• Title/Summary/Keyword: Glass composites

Search Result 910, Processing Time 0.025 seconds

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.

Effect of Combined Environmental Factors on Degradation Behavior of Carbon Fiber/Epoxy Composites (복합적인 환경인자의 영향에 따른 탄소섬유/에폭시 복합재의 열화 특성)

  • Hwang, Young-Eun;Lee, Gil-Hyung;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.37-42
    • /
    • 2009
  • Thermal analysis properties and chemical structure of carbon fiber/epoxy composites under environmental exposure were examined using an accelerated aging tester which can simulate real weather conditions such as temperature, moisture and ultraviolet. The composite specimens were exposed to combined environmental factors up to 3000 hours. Thermal analysis properties and chemical structure of the composites were evaluated with various exposure times through Modulated DSC and FTIR. According to the results of Modulated DSC, the glass transition temperature increased as exposure time increased due to the formation of network structures in the composites. Also endotherm peaks of enthalpy relaxation related to physical aging that can affect the properties of the composites were observed as exposure time increased. From the results of FTIR, it was found that the location of the peaks was little affected by exposure time, but the intensity of the peaks slightly decreased as exposure time increased due to the curing reaction in the epoxy group.

The Application of Fiber-Reinforced Composites to Electromagnetic Wave Shielding Enclosures (섬유강화 복합재료의 전자파 차폐 기구물에 대한 적용에 관한 연구)

  • Park Ki-Yeon;Lee Sang-Eui;Lee Won-Jun;Kim Chun-Gon;Han Jae-Hung
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • As the structures of the high performance electronic equipments and devices recently become more complex, the electromagnetic interference (EMI) and compatibility (EMC) have been very essential for commercial and military purposes. Thus, sensitive electrical devices and densely packed systems need to be protected from electromagnetic wave. In this research, glass fabric/epoxy composites containing conductive multi-walled carbon nanotube (MWNT) and carbon fiber/epoxy composites as electrical shielding materials were fabricated and electrical properties of the composites were measured. The concerning frequency band is from 300 MHz to 1 GHz. The performances of composite shielding enclosures were predicted using electromagnetic wave 3-D simulation tool, CST Microwave Studio. The shielding enclosure made of carbon fiber/epoxy composites were fabricated and the shielding effectiveness (SE) was measured in the anechoic chamber.

Development of Novel Ceramic Composites by Active Filler Controlled Polymer Pyrolysis with Tungsten (중석이 첨가된 고분자 유기물 열분해 방법에 의한 신세라믹복합체 개발)

  • ;;Peter Greil
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.939-944
    • /
    • 1998
  • The formation microstructure and properties of novel ceramic composite materials by active filler con-trolled polymer pyrolysis were investigated. Polymethlsiloxane filled with W is of particular interested be-cause of the formation of ceramic bonded hard materials (WC-$W_{2}C$-$S_{1}OC$) for wear resistant applications. Highly metal-filled polymer suspensions were prepared and their conversion to ceramic composites by an-nealing in $N_{2}C$ atmosphere at 1000-$1600^{\circ}C$ were studied. Dimensional change porosity and phase distribution (filler network) were analyzed and correlated to the resulting material properties. Microcrystalline com-posites with the filler reaction products embedded to the resulting material properties. Microcrystalline com-posites with the filler reaction products embedded in a silicon oxycarbide glass matrix were produced. De-pending on the pyrolysis conditions ceramic composites with a density up to 95 TD% a hardness of 7-8.8GPa Yong's modulus of 220-230 GPa a fracture toughness of 6-6.8$MPam^{1/2}$ and a flexual strength of 380-470 MPa were obtained.

  • PDF

Effect of Carbon Black Concentration and Monomer Compositional Ratio on the Flow Behavior of Copoly(styrene/butyl methacrylate) Particles (카본블랙의 농도 및 단량체 구성비에 따른 스티렌-부틸메타크릴레이트 공중합체 입자의 유동성)

  • Park, Moon-Soo;Moon, Ji-Yeon
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • We measured shear viscosity of copoly(styrene(St)/butyl methacrylate(BMA)) (co-PSB) particles, with a capillary rheometer at $170^{\circ}C$, prepared by suspension polymerization with hydrophobic silica as a stabilizer. co-PSB particles with the weight average molecular weights of lower than 74,800 g/mol displayed a Newtonian behavior at low shear rates. With the weight average molecular weight exceeding 136,800 g/mol, co-PSB particles showed shear thinning against shear rates and the absolute value of the slopes between shear viscosity vs. shear rate increased. When the ratio between St and BMA changed from 7/3 to 5/5 to 3/7, shear viscosity and glass transition decreased despite similar molecular weights. When the ratio was 1/9, it showed a large increase in initial shear viscosity despite reduced glass transition. Shear viscosity exhibited an increase in proportion to carbon black concentration. The effect of carbon black concentration on the shear viscosity of co-PSB composites was less pronounced compared to varying molecular weights and/or compositional ratio.

Effects of PE (Polyethylene) and GF (Glass Fiber) Addition on Tensile Strength and Elongation of ABS (Acrylonitrile Butadiene Styrene) Recovered from Waste LCDs (폐(廢)LCD에서 회수(回收)된 ABS(Acrylonitrile Butadiene Styrene)의 인장강도(引張强度)와 연신율(延伸率)에 미치는 PE(Polyethylene)와 유리섬유(纖維)(Glass Fiber) 첨가효과(添加效果))

  • Lee, Sungkyu;Cho, Sung-Su;Lee, Soo-Young;Park, Jae Layng;Hong, Myung Hwan;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.50-56
    • /
    • 2013
  • Recycled plastic composites of ABS/PE (50/50 and 20/80) and ABS/GF (90/10) were fabricated from plastic components of waste LCDs and effects of PE composition on elongation of ABS/PE composites were investigated. Increased PE contents improved elongation of the composite from 2.4% to 13%, which was attributed to increased crystalline behavior of the ABS/PE composite afforded by ductile PE fraction: SEM fractographs showed some sign of plastic deformation of PE matrix before ductile fracture of the composites.

Empirical Study for the Effects of Filler Shape on the Thermal Expansion Coefficient of PP Composites (충전제 함량 및 형태에 따른 PP복합체의 열팽창계수 변화에 대한 실증적 연구)

  • Hwang, Hyo-Yeon;Jeoung, Sun-Kyoung;Shim, Je-Hyeon;Kim, Jae-Min;Lee, Kee-Yoon
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.352-356
    • /
    • 2010
  • The effects of the filler shapes and contents on the coefficient of thermal expansion (CTE) for polypropylene (PP) composites which included three dimensional ellipsoids ($a_1>a_2>a_3$), as determined by two aspect ratios (${\rho}_\alpha=a_1/a_3$ and ${\rho}_\beta=a_1/a_2$) were analyzed by the theoretical approach proposed by Lee and Paul and compared with the experimental results. The shapes of fillers in the composites were various, such as spherical, fiber, disc, and ellipsoid, using barium sulfate, glass fiber, and mica. The longitudinal CTE of barium sulfate whose shape was sphere ($\rho_\alpha=\rho_\beta=1$) decreased. For the glass fiber, primary aspect ratio decreased with the filler content, and longitudinal CTE decreased as filler contents increased. Normal CTE initially increased in the lower filler content. For the mica, longitudinal and transverse CTE decreased but normal CTE increased in the lower filler content like predicted values.

Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber (유리섬유/폴리프로필렌 복합원사의 유리섬유 함량 변화에 따른 열가소성 복합재료의 함침 및 기계적 특성 평가)

  • Jang, Yeong-Jin;Kim, Neul-Sae-Rom;Kwon, Dong-Jun;Yang, Seong Baek;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.346-352
    • /
    • 2020
  • In mobility industries, the use of thermoplastic composites increased dynamically. In this study, the mechanical and impregnation properties of continuous glass fiber (GF)/polypropylene (PP) composite were evaluated with different GF contents. The GF/PP commingled fiber was manufactured with different GF contents and continuous GF/PP composite was manufactured using continuous compression molding process. Tensile, flexural, and impact test of specimens were evaluated with different GF contents. The fracture behavior of specimens was proved using field emission-scanning electron microscope images of fracture area and impregnation property was evaluated using dynamic mechanical analyzer and interlaminar shear strength. Finally, the GF/PP composite was the optimized mechanical and impregnation properties using 50 wt.% GF/PP commingled fiber.

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

Characteristics of Sintered Composites for $ZnO-{B_2}{O_3}-{SiO_2}-PbO$ Glass and $ZrB_2$Powders ($ZnO-{B_2}{O_3}-{SiO_2}-PbO$계 유리와 $ZrB_2$분말의 소결체의 특성)

  • Song, Hyun-Jin;Lee, Byung-Chul;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.562-568
    • /
    • 2001
  • Devitrifiable solder glass/$ZrB_2$ sintered composites were prepared by using glass with the composition of $60ZnO-20B_2O_3-10SiO_2-10PbO$(in wt%) and $ZrB_2$, powder as starting materials under the $N_2$atmosphere. $ZrB_2$which the good conduction materials showed sensitive oxidation characteristics, because some parts of the $ZrB_2$in specimens changed into the insulated phase of $ZrO_2$. These Phenomena would be estimated that it caused a few amount of residual oxygen in the furnace and/or specimens and the coordination number change of $B_2O_3$ in the glass. The sintering temperature and the mixed ratios of each phase were control of large ranged the resistivity ranged from 10 to 10$^{3}{\Omega}/cm^2$ orders, and to make a conductible microstructure. From these results, it would be explained that the conduction path of $ZrB_2$particles built up within sintered glass matrix.

  • PDF