• 제목/요약/키워드: Glass composites

검색결과 911건 처리시간 0.035초

Kinetic Model for Oxidation of Carbon Fiber/Glass Matrix Composites

  • Park, Chan;Park, Hee-Lack
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.254-259
    • /
    • 1998
  • A kinetic model predicting the oxidation of carbon fiber reinforced glass matrix composites has been described. The weight loss of composites during oxidation implied that a gasification of carbon fiber takes place and the transport of reactants $(O_2)$ or product (CO or $CO_3$) in the glass matrix was partially the rate controlling step. The kinetic model in this study was based on the work of Sohn and Szekely which may be regarded as a generalization of numerous models in the gas-solid reaction system. A comparison of this model with experimental data is also presented.

  • PDF

Synthesis and Properties of Carbon Nanotube Paste with Different Inorganic Binders for Field Emission Display

  • Park, Jae-Hong;Moon, Jin-San;Nam, Joong-Woo;Park, Jong-Hwan;Berdinsky, A.S.;Yoo, Ji-Beom;Lee, C.G.;Park, Chong-Yun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.468-470
    • /
    • 2004
  • CNT pastes with different inorganic binder such as glass frit and spin on glass (SOG) were synthesized by using multi-walled nanotube (MWNT) grown by CVD. The uniformity of cathode layer after firing was enhanced and the emission current density at an applied field of 7.95V/${\mu}m$ increased from 133${\mu}A$/$cm^2$ to 265${\mu}A$/$cm^2$ when inorganic binder changed from glass frit to SOG. The emission properties of CNT pastes with SOG were stable and uniform although firing was carried out at relatively high temperature of 450$^{\circ}C$ under air. It is concluded that SOG is more suitable inorganic binder than glass frit for field emission application.

  • PDF

두꺼운 유리섬유/폴리에스터 복합재료를 위한 경화 사이클 (Cure Cycle for Thick Glass/Polyester Composites)

  • 김형근;오제훈;이대길
    • Composites Research
    • /
    • 제14권2호
    • /
    • pp.33-42
    • /
    • 2001
  • DSC(differential scanning calorimetry)를 이용하여 S2-유리섬유/폴리에스터 프리프레그 복합재료의 경화반응식을 구성하였다. 구성된 경화식과 블리더의 수지 함침에 의한 열전달 조건의 변화를 고려하여, 두꺼운 복합재료의 두께 방향 위치에 따른 온도분포를 계산하였다. 유래섬유 복합재료의 경화중 온도과승을 줄이기 위한 방법으로 냉각 및 재가열 구간을 도입하여 경화 사이클을 개선하였다. 냉각-재가열 구간이 없는 기존의 경화 사이클과 개선된 경화 사이클로 두꺼운 복합재료를 각각 제조하여 short beam shear 시험 및 Barcol 경도시험을 실시하고, 그 결과를 비교하였다.

  • PDF

Mechanical Properties of Cork Composite Boards Reinforced with Metal, Glass Fiber, and Carbon Fiber

  • Min-Seong, CHA;So-Jeong, YOON;Jin-Ho, KWON;Hee-Seop, BYEON;Han-Min, PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권6호
    • /
    • pp.427-435
    • /
    • 2022
  • For effective applicability of reinforced cork, cork composites reinforced with metal, glass fiber, and carbon fiber were developed, and the effects of the reinforcing materials on the mechanical properties of cork composites were investigated. The bending moduli of elasticity (MOE) of cork composites were in the 32.7-35.9 MPa range, while the bending strength values were in the 1.62-1.73 MPa range. The strength performance decreased in the order cork-metal > cork-carbon fiber > cork-glass fiber. The bending MOEs were improved by 29%-41% compared with simple cork boards, while the bending strengths of reinforced cork were 35%-45% higher. The strength performance significantly improved following the incorporation of thin mesh materials into the middle layer of the studied cork composites. The bending strains of the cork composites were remarkably higher compared with oak wood, making them promising for applications that require bending processing, such as curved jointing. The internal bond strengths of the cork composites were 0.26-0.44 MPa, approximately 0.36-0.60 times lower compared with medium-density fiber boards.

Effect of fiber content on flexural properties of fishnet/GFRP hybrid composites

  • Raj, F. Michael;Nagarajan, V.A.;Elsi, S. Sahaya;Jayaram, R.S.
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.13-24
    • /
    • 2016
  • In the present paper, glass fibers are substituted partially with monofilament fishnet and polyester matrix for making the composites. The composite specimens were prepared in accordance with ASTM for analyzing the flexural strength and dynamic mechanical properties. Furthermore, machinability revealed the interaction of glass fiber and partial substituted monofilament fishnet fiber with the matrix. Fiber pullouts on the fractured specimen during the physical testing of the composites are also investigated by COSLAB microscope. The results reveal that the fishnet based composites have appreciably higher flexural properties. Furthermore, the glass fiber, woven roving and fishnet composite has more storage modulus and significant mechanical damping. The composite specimens were fabricated by hand lay-up method. Hence, these composites are the possible applications to develop the value added products. The results of this study are presented.

황마섬유 보강 열경화성 복합재료의 기계적 특성 (Mechanical Properties of Jute Fiber Reinforced Thermosetting Composites)

  • 이창훈;송재은;남원상;변준형;김병선;황병선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.111-115
    • /
    • 2005
  • Recently, natural fibers draw much interests in composite industry due to low cost, light weight, and environment-friendly characteristics compared with glass fibers. In this study, mechanical properties were evaluated for two extreme cases of jute fiber orientations, i.e. the unidirectional yarn composites and the felt fabric composites. Samples of jute fiber composites were fabricated by RTM process using epoxy resin, and tensile, compression, and shear tests were conducted. As can be expected, unidirectional fiber specimens in longitudinal direction showed the highest strength and modulus. Compared with glass/epoxy composites of the similar fabric architecture and fiber volume fraction, the tensile strength and modulus of jute felt/epoxy composites reached only 40% and 50% levels. However, the specific tensile strength and modulus increased to 80% and 90% of the glass/epoxy composites. The main reason for the poor mechanical properties of jute composites is associated with the weak interfacial bonding between fiber and matrix. The effect of surface treatment of jute fibers on the interfacial bonding will be examined in the future work.

  • PDF

S-2 유리섬유 평직복합재의 기지재료 및 스티칭에 따른 충격 특성 비교 (Impact Property of S-2 Glass Woven Composites with Different Matrices and Stitching)

  • 변준형;황병선;엄문광;이정훈;남원상;송승욱;이창훈
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.31-34
    • /
    • 2005
  • For the damage tolerance improvement of conventional laminated composites, stitching process has been utilized for providing through-thickness reinforcements. 2D prefonl1S were stacked with S-2 glass plain weave, and 3D preforms were fabricated using the stitching process. For the matrix system, epoxy and phenol resins were considered. To examine the damage resistance performance the low velocity drop weight impact test has been carried out, and the impact damage was examined by scanning image. CAI (Compressive After Ih1paet) tests were also conducted to evaluate residual compressive strength. Compared with 2D epoxy composites, 2D phenol composites showed drastic reduction in the compressive strength prior to impact because of the higher contents of voids. The damage area of 2D phenol composites were also larger than that of 2D epoxy composites. However, by introducing the stitching, the damage area of 3D phenol composites was reduced by 60%, while the CAI strength improvement was negligible.

  • PDF

유리침윤 알루미나 및 스핀넬 복합체에 관한 연구 I. 미세구조 및 유리함량이 접촉손상 및 강동에 미치는 영향 (A Study on Glass-Infiltrated Alumina and Spinel Composite I. Effect of Microstructure and Glass Content on Contant Damage and Strength)

  • 정연길;최성철
    • 한국세라믹학회지
    • /
    • 제35권7호
    • /
    • pp.671-678
    • /
    • 1998
  • Hertzian indentation tests with sphere indenters were used to study the mechanical properties of glass-in-filtrated alumina and spinel composites and evaluated the effect of preform microstructure and evaluated the effect of preform microstructure and glass con-tents on contanct damage and strength. The spinel composite showed more brittle behavior than the alumina composite which is verified from indentation stress-strain curve cone cracks and quasi-plastic deformation developed at subsurface. Failure originated from either cone cracks(brittle mode) or deformation zone(quasi-plastic mode) above critical load for cracking(Pc) and yield ({{{{ {P }_{Y } }}) with the brittle mode more dominant in the spinels and the quasi-plastic mode more dominant in the aluminas. Even though brittle mode was dominant in the spinel composites the strength degradation from accumulation of damage above these critical loads was conspicuously small suggesting that the glass-infiltrated composites should be highly damage tolerant to the blunt contacts.

  • PDF

풍력 블레이드를 위한 CNT 코팅 유리섬유의 적용성에 대한 비교 연구 (A Comparative Study on the Applicability of CNT-coated Glass Fiber for Wind Blades)

  • 장홍규;김영철
    • Composites Research
    • /
    • 제29권6호
    • /
    • pp.336-341
    • /
    • 2016
  • 본 논문에서는 복합재 풍력 블레이드를 위한 CNT 코팅 유리섬유의 전자기적/기계적 적용성에 대한 연구를 수행하였다. MW급 이상의 대형 복합재 블레이드는 민수용/군수용 레이더와의 신호간섭 문제로 인한 발전단지 위치선정 제약과 무게 증가에 따른 발전효율 저해, 구조적 건전성 부족에 따른 수리비용 증가의 당면과제를 안고 있다. 이에 본 연구에서는 이러한 문제를 극복하기 위한 방안으로 CNT 코팅 유리섬유를 제안하였다. 먼저 제안된 CNT 코팅 공정을 통해 유리섬유 표면에 CNT를 강력히 코팅하고, Va-RTM을 통해 CNT 코팅/유리섬유 에폭시 복합재를 제작하여 전자기적/기계적 물성을 평가하였다. 또한 전자파 흡수체 설계/제작 및 시험/평가를 통해 X-band의 8.3~12.1 GHZ에서 90% 이상 전자파 흡수성능을 가짐을 검증하였다. 이와 더불어 기계적 물성 시험/평가를 통해서 인장, 압축, 면내전단 강도/강성의 모든 기계적 물성이 향상됨을 확인하였다.

$La_2O_3-CaO-B_2O_3$계 유리 첨가 알루미나 복합체의 유전특성 (Microwave dielectric properties of $La_2O_3-CaO-B_2O_3$ glass-added alumina)

  • 임동하;김현범;신현호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.323-323
    • /
    • 2007
  • Influence of $La_2O_3$ addition to $CaO-B_2O_3$-based glass on the water leaching resistance of the glass was first investigated. The optimized $La_2O_3-CaO-B_2O_3$(LCB) glass was ball milled for varying time, followed by mixing with $Al_2O_3$ crystalline phase to form $Al_2O_3$-LCB glass composites at $875^{\circ}C$ for 1h. Microwave dielectric properties of the composites were investigated as a function of the ball milling time of the LCB glass. Dielectric constant and quality factor of the composites were 6.31 and 13856 GHz, respectively, when the LCB glass was ball milled for 2h prior to mixing with $Al_2O_3$.

  • PDF