• 제목/요약/키워드: Glass composites

검색결과 910건 처리시간 0.03초

VARTM 공정을 이용한 유리/탄소섬유 하이브리드 복합체의 특성 (Characteristics of Glass/Carbon Fiber Hybrid Composite Using by VARTM)

  • 한인섭;김세영;우상국;홍기석;서두원
    • 한국세라믹학회지
    • /
    • 제43권10호
    • /
    • pp.607-612
    • /
    • 2006
  • In VARTM (Vacuum Assisted Resin Transfer Molding) process, the permeability generally controls the filling time of the resin and it also affects the void characteristics of the fiber composite. In this study, carbon and glass fiber inter-layered hybrid composites (carbon fiber centered stack) with an epoxy matrix were fabricated by VARTM process and evaluated the resin flow and macro void characteristics. The permeability of glass fiber was higher than that of carbon fiber used in this study. Using Darcy's equation, the permeability of hybrid composites could be predicted and experimentally confirmed. After curing, the macro void content of hybrid composites was investigated using image analyzer. The calculated filling time was well agreed with experimental result and the void content was significantly changed in hybrid composites.

엔진커버용 폴리프로필렌/유리섬유/대나무섬유 복합체의 물리적 특성에 대한 대나무섬유의 용제 처리의 영향 (Effects of Solvent Treatment of Bamboo Fiber on Physical Properties of Polypropylene/Glass Fiber/Bamboo Fiber Composite)

  • 이수경;임성욱;신형식;우승건;박은영
    • 한국염색가공학회지
    • /
    • 제31권1호
    • /
    • pp.42-47
    • /
    • 2019
  • In this study, the effects of surface treatment of bamboo fiber on the physical properties of polypropylene(PP)/glass fiber(GF)/Bamboo fiber(BF) composite for engine cover were investigated. PP, GF and BF were fixed at 40%, 40% and 20% and the surface of bamboo fibers were treated to 0.5, 1.0 and 2.0% as an acid and alkali solution. PP/GF/BR composites using surface treated bamboo fibers were prepared and their tensile strength, bursting strength and impact strength were measured by universal testing machine(UTM). The composites with alkali treated bamboo fiber showed better mechanical properties than the acid treated composites. It was checked that the optimum alkali content was at 1.0% from the results of mechanical properties. The effect of surface treatment on the mechanical properties was confirmed by SEM images of fractured surface.

서프보드 적용을 위한 하이브리드 복합재료의 열적 특성 (Thermal Characteristics of Hybrid Composites for Application to Surfboard)

  • 김윤해;이진우;박창욱;박수정
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.351-355
    • /
    • 2014
  • Today, carbon fibers are used as heating elements. Carbon fibers are generally used to reinforce composite materials because they are lightweight and have a high strength and modulus. Carbon fiber reinforced composite materials are used for aerospace, automobile, and wind turbine blade applications. This work explored the possibility of using carbon fiber reinforced composite materials as self heating materials. The temperatures of the carbon fiber reinforced composites were measured. These results verified that the carbon fiber reinforced composite materials could be used as heating elements. A glass fiber was laminated using various methods. The thermal characteristics of the composites were evaluated. This confirmed that the generation of heat varied according to the lamination thicknesses of the carbon fiber and glass fiber. As the number of carbon fiber laminations increased, the heat-generating temperature increased. In contrast, as the number of glass fiber laminations increased, the amount of heat decreased. The generation of heat and ability to remain warm could be controlled by controlling the carbon fiber and glass fiber laminations.

카본블랙/섬유강화 복합재료의 전자파 차폐효과 (Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite)

  • 김진석;한길영;안동규;이상훈;김민수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

유리섬유강화 에폭시 레진 복합체의 기계적, 유전체 특성에 미치는 첨가제 함유 에폭시 영향 (Effect of Additive-added Epoxy on Mechanical and Dielectric Characteristics of Glass Fiber Reinforced Epoxy Composites)

  • ;;;최형진
    • 폴리머
    • /
    • 제38권6호
    • /
    • pp.726-734
    • /
    • 2014
  • Three different types of additives, thiokol, epoxidized natural rubber (ENR) and epoxidized linseed oil (ELO), were dispersed in an epoxy matrix before being used in glass fiber (GF) composites, and their effects on the mechanical and dielectric properties of epoxy resin and glass fiber reinforced epoxy composites (GF/EP) were examined. The addition of each of 7 phr ENR, 9 phr ELO and 5 phr thiokol into the epoxy resin increased the fracture toughness significantly by 56.9, 43.1, and 80.0%, respectively, compared to the unmodified resin. The mode I interlaminar fracture toughness of the GF/EP at propagation was also improved by 26.9, 18.3 and 32.7% when each of 7 phr ENR, 9 phr ELO, and 5 phr thiokol, respectively, was dispersed in the epoxy matrix. Scanning electron microscopy showed that the additives reduced crack growth in the GF/EP, whereas their dielectric measurements showed that all these additives had no additional effect on the real permittivity and loss factor of the GF/EP.

상대재의 거칠기에 따른 GF/PUR 복합재료의 연삭마모거동 (Behavior of abrasive wear on counterpart roughness of glass fiber reinforcement polyurethane resin composites)

  • 김형진;고성위;김재동
    • 수산해양기술연구
    • /
    • 제47권3호
    • /
    • pp.267-272
    • /
    • 2011
  • The behavior of abrasive wear on counterpart roughness of glass fiber reinforcement polyurethane resin (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The friction coefficient, cumulative wear volume and surface roughness of these materials against SiC abrasive paper were determined experimentally. The major failure mechanisms were lapping layers, ploughing, delamination, deformation of resin and cracking by scanning electric microscopy (SEM) photograph of the tested surface. As increasing the counterpart roughness the GF/PUR composites indicated higher friction coefficient. The surface roughness of the GF/PUR composites was increased as the sliding velocity was higher and the counterpart roughness was rougher in wear test.

유리섬유강화 복합재료의 미끄럼 속도변화에 따른 마모 특성 (Characteristics of Wear on Sliding Speed of Glass Fiber Reinforcement Composites)

  • 김형진;고성위
    • 수산해양기술연구
    • /
    • 제48권3호
    • /
    • pp.277-283
    • /
    • 2012
  • The characteristics of abrasive wear on sliding speed of glass fiber reinforcement (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and surface roughness of these materials on sliding speed were determined experimentally. The major failure mechanisms were lapping layers, deformation of resin, ploughing, delamination, and cracking by scanning electric microscopy (SEM) photograph of the tested surface. As increasing the sliding speed the GF/PUR composites indicated higher friction coefficient. The surface roughness of the GF/PUR composites was increased as the sliding speed was higher in wear test.

철도차량용 유리섬유직물/페놀릭 복합재의 가속노화 특성 (Aging Characteristics of Glass Fabric/Phenolic Composites in Train Carbody)

  • 윤성호;남정표;황영은;신광복
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.352-357
    • /
    • 2004
  • In this study. the effects of combined environmental factors on mechanical and thermal analysis properties of graphite/epoxy composites were evaluated through a 2.5KW accelerated environmental aging tester. Environmental factors such as temperature. moisture, and ultraviolet were considered. A xenon-arc lamp was utilized for ultraviolet light. and exposure times of up to 3000 hours were applied. Several types of specimens - tensile, bending, and shear specimens those are warp direction and fill direction were used to investigate the effects of environmental factors on mechanical properties of the composites. The glass fabric $\sharp$650/AP300 was used for the fabrication of specimens. Mechanical degradations for tensile, bending and shear properties were evaluated through a UTM. Also. storage shear modulus. loss shear modulus, and tan $\delta$ were measured as a function of exposure times through a dynamic mechanical analyzer. Finally exposed surfaces of the composites were examined using II scanning electron microscope.

  • PDF

하중변화에 따른 GF/PUR 복합재료의 연삭마모특성 (Effect of load upon the abrasive wear characteristics of glass fiber reinforced polyurethane composites)

  • 고성위
    • 수산해양기술연구
    • /
    • 제46권4호
    • /
    • pp.495-502
    • /
    • 2010
  • The effect of load and sliding speed on abrasive wear characteristics of glass fiber/polyurethane (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The friction coefficient, cumulative wear volume and surface roughness of these materials against SiC abrasive paper were determined experimentally. Experimental results showed that the surface roughness of the GF/PUR composites was increased as applied load was higher in wear test. The cumulative wear volume tended to increase nonlinearly with increase of sliding distance and depended on applied load and sliding speed for these composites. It could be verified by scanning electric microscopy (SEM) photograph of surface tested that major failure mechanisms were lapping layers, ploughing, delamination, deformation of resin and cracking.

일방향 섬유강화 플라스틱 복합재의 점도에 미치는 성형인자의 영향 (Effect of Molding Parameters on Viscosity of Unidirectional Fiber Reinforced Plastic Composites)

  • 조선형;안종윤;윤성운
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.41-48
    • /
    • 2000
  • The Compression molding process is widely used in the automotive industry to produce parts that are large, thin, light-weight, strong and stiff. Compression molded parts are formed by squeezing a glass fiber reinforced polypropylene sheet, known a glass mat thermoplastic(GMT), between two heated cavity surfaces. In this study, the anisotropic viscosity of the Unidirectional Fiber-Reinforced Plastic Composites is measured using the parallel plastometer and the composites is treated as an incompressible Newtonian fluid. The effects of molding parameter and fiber contents ratio on longitudinal/transverse viscosity are also discussed.

  • PDF