• Title/Summary/Keyword: Glass Micro Structure

Search Result 98, Processing Time 0.024 seconds

Fabrication of a Micro Actuator with p$^+$ Si Cantilevers for Optical Devices (p$^+$ Si 외팔보 구조를 이용한 광학 소자용 마이크로 구동기의 제작)

  • Park, Tae-Gyu;Yang, Sang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.249-252
    • /
    • 2001
  • The paper represents the design and fabrication of an electrostatic micro actuator with $p^+$,/TEX> Si cantilevers. The micro actuator consists of a plate suspended by four $p^+$,/TEX> silicon cantilevers and an electrode on a glass substrate. The $p^+$,/TEX> Si structure is fabricated by the boron diffusion process and the anisotropic wet etch process. The cantilevers of the micro actuator curl down because of the residual stress gradient in $p^+$,/TEX> silicon. When the electrostatic forec is applied to the $p^+$,/TEX> cantilevers, the vertical displacement of the plate can be achieved. The deflection of the cantilever due to the residual stress gradient and the vertical displacement by electrostatic force were calculated. The displacement of the plate was measured with a laser displacement meter for various input voltages and frequencies. The feasibility of the proposed micro actuator for the applications to optical pickup devices or optical communication devices was confirmed by the experiments.

  • PDF

Development of MEMS-based Micro Turbomachinery (MEMS-based 마이크로 터보기계의 개발)

  • Park, Kun-Joong;Min, Hong-Seok;Jeon, Byung-Sun;Song, Seung-Jin;Joo, Young-Chang;Min, Kyoung-Doug;You, Seung-Mun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.169-174
    • /
    • 2001
  • This paper reports on the development of high aspect ratio structure and 3-D integrated process for MEMS-based micro gas turbines. To manufacture high aspect ratio structures, Deep Reactive Ion Etching (DRIE) process have been developed and optimized. Specially, in this study, structures with aspect ratios greater than 10 were fabricated. Also, wafer direct bonding and Infra-Red (IR) camera bonding inspection systems have been developed. Moreover, using glass/silicon wafer direct bonding, we optimized the 3-D integrated process.

  • PDF

On-Glass Vehicle Antennas Using a Multi-Loop Structure (다중 루프 형태의 차량용 글래스 안테나)

  • Ahn, Seung-Beom;Kay, Young-Chul;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.230-239
    • /
    • 2009
  • In this paper, we propose a novel on-glass antenna for FM radio reception in a recreation vehicle(RV). We use a multi-loop structure that takes advantage of a broad matching bandwidth and a high vertical radiation gain by efficiently utilizing a given space of a quarter glass in spite of the simple planar structure. Transparency of the antenna is also improved by adjusting the stripline widths based on the induced current distributions. The proposed antenna is printed on a quarter glass of a commercial vehicle and antenna performances such as the return loss and the gain are measured in a semi-anechoic chamber. The result shows the average gain of -9.67 dBi along the bore-sight direction($\theta=90^{\circ}$, $\phi=270^{\circ}$) in the FM radio band(80$\sim$l10 MHz), which is higher than a commercial monopole typed on-glass antenna($G_{ave}$=-12.49 dBi) and micro-antenna($G_{ave}$=-19.24 dBi) mounted on the roof of the RV.

Development of Engine Piston Ring Surface for Friction Reduction using Micro Abrasive Air Jet (Micro-AAJ를 이용한 엔진 피스톤 링의 마찰 저감 표면 개발)

  • Choi, Soochang;Ro, Seung-Kook;Lee, Hyun-Hwa;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.389-394
    • /
    • 2014
  • In this paper, we report a new manufacturing method for friction reduction using micro-AAJ (abrasive air-jet) machining. AAJ machining employs compressed air to accelerate a jet of high-speed particles to mechanically machine features, including micro-channels and micro-holes, into glass, metal, or polymer substrates for use in microfluidics, MEMS (micro electromechanical systems). And we introduce the micro-AAJ machining system, which consists of a micro-AAJ nozzle and a five-axis positioning system. Various micro-AAJ nozzles can be used, depending on the required surface structure, and three-dimensional machining is possible. We machined samples under six different conditions and describe machining results obtained while using it. We also measured the coefficient of friction of micro-textured surfaces. We report the coefficient of friction of micro-textured surfaces patterned using micro-AAJ machining for engine piston ring.

A Micro Passive Gas Pressure Regulator using Pressure Balance Mechanism (압력평형메커니즘을 이용한 초소형 수동형 기체 압력조정기)

  • Lee, Ki-Jung;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.138-143
    • /
    • 2010
  • This paper presents the analysis, the fabrication and the test results of a micro passive gas pressure regulator to keep the outlet pressure costant even for a widely-varying inlet pressure. This device is to regulate the outlet pressure according to the applied reference pressure based on the pressure balancing mechanism of the structure including a membrane and a valve. This regulator consists of four layers; a bulk-micromachined silicon substrate, a sandblasted glass substrate, a PDMS valve seat layer and a glass valve layer. The device size is $10\times13\times1.7 mm3$. The device was fabricated by micromachining. The characteristic of the device was analyzed and tested. The characteristic of the fabricated pressure regulator is similar to that obtained from the analysis. The pressure regulator of this paper is feasible for portable systems and miniature drug delivery systems.

Highly Sensitive Detection of Pathogenic Bacteria Using PDMS Micro Chip Containing Glass Bead (유리비드를 포함한 PDMS 마이크로칩을 이용한 고감도 감염성 병원균 측정에 관한 연구)

  • Won, Ji-Yeong;Min, Jun-Hong
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.432-438
    • /
    • 2009
  • Here, we demonstrated simple nucleic acid, RNA, concentration method using polymer micro chip containing glass bead ($100\;{\mu}m$). Polymer micro chip was fabricated by PDMS ($1.5\;cm\;{\times}\;1.5\;cm$, $100\;{\mu}m$ in the height) including pillar structure ($160\;{\mu}m\;(I)\;{\times}\;80\;{\mu}m\;(w)\;{\times}\;100\;{\mu}m\;(h)$, gap size $50\;{\mu}m$) for blocking micro bead. RNA could be adsorbed on micro glass bead at low pH by hydrogen bonding whereas RNA was released at high pH by electrostatic force between silica surface and RNA. Amount of glass beads and flow rate were optimized in aspects of adsorption and desorption of RNA. Adsorption and desorption rate was measured with real time PCR. This concentrated RNA was applied to amplification micro chip in which NASBA (Nucleic Acid Sequence Based Amplification) was performed. As a result, E.coli O157 : H7 in the concentration of 10 c.f.u./10 mL was successfully detected by these serial processes (concentration and amplification) with polymer micro chips. It implies this simple concentration method using polymer micro chip can be directly applied to ultra sensitive method to measure viable bacteria and virus in clinical samples as well as environmental samples.

Solar Module with a Glass Surface of AG (Anti-Glare) Structure (연요철(Anti-Glare) 구조의 표면 유리 기판을 가지는 고효율 태양전지 모듈)

  • Kong, Dae-Young;Kim, Dong-Hyun;Yun, Sung-Ho;Bae, Young-Ho;Yu, In-Sik;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.233-241
    • /
    • 2011
  • Currently, solar module is using the two methods such as a glass-filled method or a super-straight method. The common point of these methods is to use glass structure on the front of solar module. However, the reflectance of the solar module is high depending on the height of the incident sunlight due to the flat surface of the module front glass. Purposed to solve these problems, AG (anti-glare) structures were formed on the glass surface. Next is fabrication methods of AG structure. First, uneven structure made by micro blaster equipment was dipped in Hydro-fluidic acid (HF) acid. HF acid process was carried out to remove particles and to make high transmittance. The reflectance and transmittance of the anti-glare glass was compared to those of the bare glass. The reflectance of anti-glare glass decreased approximately 1% compared with bare glass. The transmittance of anti-glare glass was similar to bare glass. According to the sample angle, the difference of the reflectance between bare glass and the anti-glare glass was about 19%. Isc and efficiency value of anti-glare glass on bare solar cell appeared about 3.01 mA and 0.228% difference compared with bare glass. Anti-glare glass on textured solar cell appeared about 9.46 mA and 0.741% difference compared with bare glass. As a result, the role of anti-glare in the substrate is to reduces the loss of sunlight reflected from the surface. In this study, therefore, AG structure on the solar cell was used to improve the efficiency of solar cell.

Development of Nano-Stereolithography Process for Precise Fabrication of Three-Dimensional Micro-Devices (3차원 마이크로 디바이스 개발을 위한 나노 스테레오리소그래피 공정 개발에 관한 연구)

  • Park Sang-Hu;Lim Tae Woo;Yang Dong-Yol;Yi Shin Wook;Kong Hong-Jin;Lee Kwang-Sup
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.45-49
    • /
    • 2006
  • A nano-stereolithography (NSL) process has been developed for the fabrication of three-dimensional (3D) micro-devices with high spatital resolution of approximately 100 nm. In the NSL process, a complicated 3D structure can be created by stacking layer-by-layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D stacked structure was finished, unsolidified liquid resins were rinsed by ethanol to develop the fabricated structures; then, the polymerized structure was only left on the glass substrate. Through this work, several 3D microstructures such as a micro-channel, shell structures, and photonic crystals were fabricated to evaluate the possibility of the developed system.

Fabrication and Performance Evaluation of MEMS Methanol Reformer for Micro Fuel Cells (마이크로 연료전지용 MEMS 메탄올 개질기의 가공과 성능시험)

  • Kim, Tae-Gyu;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1196-1202
    • /
    • 2006
  • A MEMS methanol reformer was fabricated and its performance was evaluated in the present study. Catalytic steam reforming of methanol was selected because the process had been widely applied in macro scale reformers. Conventional Cu/ZnO catalyst that was prepared by co-precipitation method to give the highest coating quality was used. The reactor structure was made by bonding three layers of glass wafers. The internal structure of the wafer was fabricated by the wet-etching process that resulted in a high aspect ratio. The internal surface of the reactor was coated by catalyst and individual wafers were fusion-bonded to form the reactor structure. The internal volume of the microfabricated reactor was $0.3cm^3$ and the reactor produced exhaust gas with hydrogen concentration at 73%. The production rate of hydrogen was 4.16 ml/hr that could generate power of 350 mW in a typical PEM fuel cell.