• Title/Summary/Keyword: Glass Infiltration

Search Result 61, Processing Time 0.044 seconds

Acid etching of glass-infiltrated zirconia and its biological response

  • Vu, Van Thi;Oh, Gye-Jeong;Yun, Kwi-Dug;Lim, Hyun-Pil;Kim, Ji-Won;Nguyen, Thao Phuong Thi;Park, Sang-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.104-109
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the influence of acid etching treatment on surface characteristics and biological response of glass-infiltrated zirconia. MATERIALS AND METHODS. A hundred zirconia specimens were divided into four groups depending on surface treatments: untreated zirconia (group Z); acid-etched zirconia (group ZE); glass-infiltrated zirconia (group ZG); and glass-infiltrated and acid-etched zirconia (group ZGE). Surface roughness, surface topography, surface morphology, and Vickers hardness of specimens were evaluated. For biological response test, MC3T3-E1 cell attachment and proliferation on surface of the specimens were examined. The data were statistically analyzed using one-way ANOVA and Tukey's HSD test at a significance level of 0.05. RESULTS. Group ZGE showed the highest surface roughness ($Ra=1.54{\mu}m$) compared with other groups (P < .05). Meanwhile, the hardness of group Z was significantly higher than those of other groups (P < .05). Cell attachment and cell proliferation were significantly higher in group ZGE (P < .05). CONCLUSION. We concluded that effective surface roughness on zirconia could be made by acid etching treatment after glass infiltration. This surface showed significantly enhanced osteoblast cell response.

The Holding Characteristics of the Glass Filter Separators of Molten Salt Electrolyte for Thermal Batteries (열전지용 용융염 전해질의 유리필터분리판의 담지특성)

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Huh, Seung-Hun;Shin, Dong-Geun;Kim, Hyoun-Ee;Cheong, Hae-Won;Cho, Sung-Baek
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.464-471
    • /
    • 2008
  • The electrolyte separator for thermal battery should be easily handled and loaded a large amount of the molten salt. Ceramic fibers, especially fibrous commercial glass filters were used as an electrolyte separator and the lithium based molten salts were infiltrated into the ceramic filters. The pore structures of the ceramic filter and the melting properties of the lithium salts affected to the electrolyte loading and leakage. During the infiltration, ions of $Li^+$ and $F^-$ in the molten salts were reacted with the glass fiber and caused to be weaken the fiber strength.

Effect of glass-infiltration treatments on the shear bond strength between zirconia and ultra low-fusing porcelain veneer (글라스 용융침투 처리가 지르코니아와 초저온 소성 도재와의 전단결합강도에 미치는 영향)

  • Yim, Eun-Kyung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.269-277
    • /
    • 2018
  • Purpose: This study examined the effects of glass infiltration treatments on the shear bond strength (SBS) between zirconia core and ultra low-fusing porcelain veneer. Materials and methods: The zirconia specimens were classified into 4 groups (n = 12): Untreated zirconia (group Z), zirconia coated ZirLiner (group ZL), glass-infiltrated zirconia (group ZG), glass-infiltrated and sandblasted zirconia (group ZGS). A cylinder of ultra low-fusing veneer porcelain was build up on each disk ($6mm{\times}3mm$). SBS was measured using a universal testing machine. Scanning electron microscope and Energy Dispersive X-ray spectroscopy were used to evaluate the surface of zirconia and failure pattern after SBS. Results: SBS value of group ZGS was significantly lower than that of other groups (P < .05). No significant differences were detected among group ZL, group Z and group ZG. Conclusion: Glass infiltration is not effective to the bond strength between zirconia and ultra low-fusing porcelain veneer. Sandblasting also dramatically decreased the bonding strength.

AN EXPERIMENTAL STUDY OF THE EFFECT OF ALUMINA AND ZIRCONIA ON MECHANICAL PROPERTIES OF DENTAL CORE PORCELAIN (Alumina와 zirconia가 치과용 코아 도재의 물리적 성질에 미치는 영향에 관한 실험적 연구)

  • Shin Hyeon-Soo;Lee Sang-Jin;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.317-349
    • /
    • 1993
  • This study investigated the effect of filler particle size and weight% on mechanical properties of dental core porcelain. In alumina, variation in particle size and weight% and in zirconia, variation in weight%, all specimens were tested three-point bending strength, transmittance, thermal expansion coefficient, porosity and shrinkage and observed with SEM and analysed with X-ray diffractometer. In order to develop shrink-free porcelain, after firing alumina only, glass wasinfiltrated. And aluminum was added to alumina with the expanding character of aluminum oxidize into alumina, and was followed by second firing of glass infiltration procedure. Then mechanical properties were observed. The results of this study were obtained as follows. 1. The bending strength of zirconia was higher than that of alumina, and $5{\mu}m$ alumina had highest strength in variation of particle size of alumina. Except for $5{\mu}m$ alumina, increased with weight%, bending strength increased up to 80% and decreased at 90%. In case of glass infiltration, bending strength was slight higher than 80% and 90% of $5{\mu}m$ alumina. 2. Transmittance increased with increase of shrinkage, decrease of porosity, and with increase of filler size and had no direct correlation with weight%. 3. Thermal expansion coefficient of alumina group was $7.42\sim8.64\times10^{-6}/^{\circ}C$ and that of zirconia group was $9.83\sim12.11\times10^{-6}/^{\circ}C$ and the latter was higher than the former. 4. In x-ray diffraction analysis, alumina group and zirconia group increased $Al_2O_3$ peak and $t-ZrO_2$ peak with increase of weight%. The second phase(cristobalite peak) was observed in zirconia 40% group. 5. Porosity of zirconia was lower than that of alumina and $5{\mu}m$ alumina group had many pores with SEM. In case of low filler content, fracture occurred in glass and high filler content, in glass and filler. In case of aluminum addition to alumina, small oxidised aluminum was observed. 6. Zirconia group had high shrinkage than alumina group, and mixed group of alumina group had high shrinkage. In case of glass infiltration, shrinkage decreased and aluminum addition to alumina group was almost shrink-free.

  • PDF

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

THE PHYSCIAL PORPERTIES OFY Y2O3-CONTAINING GLASS INFILTRATED ALUMINA CORE MADE BY PRESSURELESS POWDER PACKING METHOD (무가압 분말충전 알루미나에 이트리아를 함유한 붕규산염 유리를 침투시킨 코아 도재의 물성)

  • Whang, Seung-Woo;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.221-243
    • /
    • 1997
  • The objective of this study was to characterize the mechanical properties of $Y_{2}O_{3}$-containing glass infiltrated ceramic core material, which was made by pressureless powder packing method. A pure alumina powder with a grain size of about $4{\mu}m$ was packed without pressure is silicon mold to form a bar shaped sample, and applied PVA solution as a binder. Samples were sinterd at $1350^{\circ}C$ for 1 hour. After cooling, $Y_{2}O_{3}$-containing glass($SiO_{2},\;Y_{2}O_{3},\;B_{2}O_{3},\;Al_{2}O_{3}$, ect) was infiltrated to the sinterd samples at $1300^{\circ}C$ for 2 hours and cooled. Six different proportions $Y_{2}O_{3}$ of were used to know the effect of the mismatch of the thermal expansion coefficient between alumina powder and glass. The samples were ground to $3{\times}3{\times}30$ mm size and polished with $1{\mu}m$ diamond paste. Flexural strength, fracture toughness, hardness and other physical properties were obtained, and the fractured surface was examined with SEM and EPMA. Ten samples of each group were tested and compared with In-Ceram(tm) core materials of same size made in dental laboratory. The results were as follows : 1. The flexural strengths of group 1 and 3 were significantly not different with that of In-Ceram, but other experimental groups were lower than In-Ceram. 2. The shrinkage rate of samples was 0.42% after first firing, and 0.45% after glass infiltration. Total shrinkage rate was 0.87%. 3. After first firing, porosity rate of experimental groups was 50%, compared with 22.25% of In-Ceram. After glass infiltration, porosity rate of experimental groups was 2%, and 1% in In-Ceram. 4. There was no statistical difference in hardness between two materials tested, but in fracture toughness, group 2 and 3 were higher than In-Ceram. 5. The thermal expansion coefficients of experimental groups were varied to $4.51-5.35{\times}10^{-6}/^{\circ}C$ according to glass composition, also the flexural strengths of samples were varied. 6. In a view of SEM, many microparticles about $0.5{\mu}m$ diameter and $4{\mu}m$ diameter were observed in In-Ceram. But in experimental group, the size of most particles was about $4{\mu}m$, and a little microparticles was observed. The results obtained in this study showed that the mismatch of the thermal expansion coefficients between alumina powder and infiltrated glass affect the flexural strength of alumin/glass composite. The $Y_{2}O_{3}$-containing glass infiltrated ceramic core made by powder packing method will takes less time and cost with sufficient flexural strength similar to all ceramic crown made with slip casting technique.

  • PDF

Glass-alumina Composites Prepared by Melt-infiltration: II. Kinetic Studies (용융침투법으로 제조한 유리-알루미나 복합체: II. Kinetic 연구)

  • Lee, Deuk-Yong;Jang, Joo-Wung;Lee, Myung-Hyun;Lee, Jun-Kwang;Kim, Dae-Joon;Park, Il-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.145-152
    • /
    • 2002
  • Four commercial alumina powders having different particle size of $0.5{\mu}m,\;2.8{\mu}m,\;12{\mu}m,\;and\;45{\mu}m$ were presintered at 1120$^{\circ}C$ for 2h and then lanthanum aluminosilicate glass was infiltrated at 1100$^{\circ}C$ for 2h in the interval of 0.1h to investigate the penetration kinetic of the glass into the alumina preforms. The infiltration distance is parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, increases with raising the alumina particle size. The strength of glass-alumina composites increases as the alumina particle size reaches to 2.8${\mu}m$ due to the increase in packing, however, decreases with further increasing the alumina particle size. The fracture toughness of the composites rises with increasing the alumina particle size due to the crack bowing and the interaction between crack and alumina particles.

Analysis and Quantification of Seawater Infiltration by Wave Action in Coastal Zone (연안해역에서 파도에 의한 해수 침투이론의 비교와 정량화)

  • Cheong Cheong-jo;Choi Doo-hyoung;Kim Tae-keun;Okada Mitsumasa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.3-11
    • /
    • 2001
  • To know the seawater infiltration into tidal flat sediment in coastal area is very important, because it is significantly correlated with the infiltration and transportation of pollutants in soil, the supply of dissolved oxygen, nutrients and organic matter to benthic organisms for survival of benthic organisms and the seawater purification. So, we set up purpose to clarify the infiltration behavior of seawater by wave action in tidal flat, to clear the effects of slope of tidal flat and breaking wave height on seawater infiltration and to quantify the infiltration volume of seawater. For purpose, the seawater infiltration was studied with visualization method by using coloring tracer and transparent glass beads replaced as natural sediment in model tidal flat. Specific conclusions derived from this study are as follows. The semi-circular type infiltration of seawater by wave action into saturated sediment was a new infiltration behavior that was not considered in previous studies. The infiltration rate of seawater was increased with increasing of breaking wave height and slope of tidal flat. However, the effects of the slope was bigger than that of breaking wave height on seawater infiltration into tidal flat sediments. It was possible to calculate the infiltration volume of seawater by wave action in natural tidal flat sediment and in fields. Therefore, we can point out that wave action play an important role in the supply of dissolved oxygen, nutrients and organic matter to benthic organisms, transportation or diffusion of pollutants and seawater purification. So, we hope to be studied the supply of food to benthic organism, pollutant transport and seawater purification on the base of these results.

  • PDF

Microstructure and Mechanical Properties of Infiltrated Zirconia-Mullite Composite (침투된 지르코니아-뮬라이트 복합체의 미세구조 및 기계적 성질)

  • 손영권;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.174-180
    • /
    • 2000
  • Y-TZP/mullite composites were prepared by the infiltration of Y-TZP precursor into partially reaction-sintered mullite. The addition of Y-TZP(~7.2 wt%) increased the bend strength(207 MPa), fracture toughness(4.6MPa.m1/2) and Vickers microhardness(853kg/$\textrm{mm}^2$) of the uninfiltrated mullite sintered at 162$0^{\circ}C$ for 10h by more than 75, 70 and 105%, respectively. Residual alumina-rich glass was observed at a mullite/mullite junction, due to the mullitization reaction of silica melt with crystalline $\alpha$-Al2O3 during a final sintering. Although ZrO2 inclusions improved the final sintered density of mullite they did not effectively prevent its grain growth.

  • PDF