• Title/Summary/Keyword: Glass Fiber Reinforced Plastics

Search Result 108, Processing Time 0.026 seconds

Development of CPGFRP Sensor for Fine Crack Detection of Structures (구조물 미세크랙 예측용 CPGFRP센서 개발)

  • Shin Soon-Gi;Jang Chang-Woo;Park Yun-Han;Kim Seoung-Eun;Kim Hwang-Soo;Lee Jun-Hee
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.119-122
    • /
    • 2004
  • A CPGFRP(Carbon Powder Glass Fiber Reinforced Plastics) sensor was fabricated for fine crack detection of structures. The electrical resistance of the sensor was measured on condition of various composition of carbon powders and thickness of bundle of glass fibers. The resistance was decreased as the increase of the content of carbon powders and the TEX of the glass fibers. In the case of loading on CPGFRP sensor, because inner crack was propagated, the part of percolation structures was disconnected. The sensor is superior to carbon fiber for the detecting ability of fine crack.

  • PDF

Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics (유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.349-357
    • /
    • 2019
  • Finite element method (FEM) is utilized in the development of products to realistically analyze and predict the mechanical behavior of materials in various fields. However, the approach based on the numerical analysis of glass fiber reinforced plastic (GFRP) composites, for which the fiber orientation and strain rate affect the mechanical properties, has proven to be challenging. The purpose of this study is to define and evaluate the mechanical properties of glass fiber reinforced plastic composites using the numerical analysis models of Digimat, a linear, nonlinear multi-scale modeling program for various composite materials such as polymers, rubber, metal, etc. In addition, the aim is to predict the behavior of realistic polymeric composites. In this regard, the tensile properties according to the fiber orientation and strain rate of polybutylene terephthalate (PBT) with short fiber weight fractions of 30wt% among various polymers were investigated using references. Information on the fiber orientation was calculated based on injection analysis using Moldflow software, and was utilized in the finite element model for tensile specimens via a mapping process. LS-Dyna, an explicit commercial finite element code, was used for coupled analysis using Digimat to study the tensile properties of composites according to the fiber orientation and strain rate of glass fibers. In addition, the drawbacks and advantages of LS-DYNA's various anisotropic material models were compared and evaluated for the analysis of glass fiber reinforced plastic composites.

Post-Thermal Exposure Bond Strength Properties of CFRP and GFRP in Concrete (콘크리트 고온 가열 이후 CFRP와 GFRP의 부착강도 특성)

  • Kim, Ju-Sung;Jeong, Su-Mi;Kim, Young-Jin;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.509-517
    • /
    • 2023
  • The surge in FRP(Fiber Reinforced Plastic) research signifies the industry's pursuit to counteract the longstanding issue of rebar corrosion. Notably, Carbon Fiber Reinforced Plastic(CFRP) emerges as a commendable alternative, given its superior resistance to both corrosion and chemical interactions, thus positing itself as a potential replacement for traditional steel rebars. However, the layered composition of fibers and resin in CFRP flags a notable susceptibility to elevated temperatures. Despite its promise, comprehensive studies elucidating the full spectrum of CFRP properties remain ongoing. In this investigative study, we meticulously assessed the bond strength of CFRP post-exposure to high thermal conditions. Our findings underscored a parity in bond strength amongst silica sand-coated CFRP, rib-type CFRP, and Glass Fiber Reinforced Plastic(GFRP).

Behavior of pre-cracked deep beams with composite materials repairs

  • Boumaaza, M.;Bezazi, A.;Bouchelaghem, H.;Benzennache, N.;Amziane, S.;Scarpa, F.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.575-583
    • /
    • 2017
  • The study covers the behavior of reinforced concrete deep beams loaded under 4-point bending, failed by shear and repaired using bonding glass fiber reinforced plastics fabrics (GFRP) patches. Two rehabilitation methods have been used to highlight the influence of the composite on the ultimate strength of the beams and their failure modes. In the first series of trials the work has been focused on the reinforcement/rehabilitation of the beam by following the continuous configuration of the FRP fabric. The patch with a U-shape did not provide satisfactory results because this reinforcement strategy does not allow to increase the ultimate strength or to avoid the abrupt shear failure mode. A second methodology of rehabilitation/reinforcement has been developed in the form of SCR (Strips of Critical Region), in which the composite materials reinforcements are positioned to band the inclined cracks (shear) caused by the shear force. The results obtained by using this method lead a superior out come in terms of ultimate strength and change of the failure mode from abrupt shearing to ductile bending.

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.

Effects of Heat Treatment on Electrical and Mechanical Properties of Glass Fiber Reinforced Epoxy (열처리가 유리섬유 강화 복합재료의 전기적 및 기계적 성질에 미치는 영향)

  • 이백수;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.174-180
    • /
    • 1998
  • In this work, the properties of FRP, which is applied recently in the composite insulating materials, by thermal treatment were investigated. The specimens were epoxy glass laminates fabricated by thermal press method and had the volume content of 46[%] cutted $45^{\circ}C$ in the fiber direction and 1.0[mm] thickness. The experimental results showed that the amount of weight loss, wettability, surface potential, and surface resistivity increased up to 200[$^{\circ}C$] as a function of temperature. Usually, most degradations caused the hydrophilic to decrease the contact angle. But, in this work on thermal-degradated FRP, we can confirm the introduction of hydrophobic properties by cross-linking and the ablation of polar small-molecules rather than chain scission and oxidation. Finally, weight loss and contact angle increased. These phenomena show the existence of hydrophobic surface. With the change to the hydrophobic surface and the electrical potential and resistivity on FRP surface increased. But, the dielectric properties and tensile stength are decreased.

  • PDF

Thermal Inspection of GFRP using Liquid Crystal (액정을 이용한 GFRP의 열적시험법에 관한 연구)

  • Kim, Y.H.;Kwon, O.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.2
    • /
    • pp.50-55
    • /
    • 1990
  • Flaws in GFRP(Glass Fiber Reinforced Plastics) were thermally detected using cholesteric liquid crystals. Presence of flaws changes the thermal conductivity of GFRP, and disturbs heat flow. When a uniform heat source is applied, the surface temperature of flawed region is different from that of sound region. The surface temperature distributions were measured by thermo-optic properties of liquid crystal. Since the colors of liquid crystal indicate temperature distribution of GFRP surface, the thermal disturbance by flaws could be detected. The locations of flaws in GFRP could be determined from the distribution of liquid crystal colors.

  • PDF

The Characteristics of Potential Decay on the Corona Electrified Composite Insulating Material by Surface Condition (코로나 대전된 복합절연재료의 표면상태가 전위감쇠에 미치는 영향)

  • 황명환;정재희;조한구;송진호;이덕출
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.65-69
    • /
    • 1997
  • Especially, Fiber glass Reinforced Plastics(FRP) is the best composite insulating material which has been so far. Therefore, it's worthy of notice to investigate on the corona electrified composite insulating material by surface condition. And then some other materials will be focussed on. In this study, charge decay were measured with charging-time and grid voltage on FRP composite material surface in order to analyze the mechanism. As a result we have studied that the way of the composite glass fiber(GF) and Polymer and the condition of the contaminated surface was different. In case of the GF is mixed with vertical, charge decay speed is fast because the charge is easily leaked. On the other hand, the surface charge decay speed is depend on conductive or insulated of the contaminant.

  • PDF

Effect of silane coupling agent on the Dielectric Properties of Glass Cloth / Epoxy Composite (Glass Cloth / Epoxy 복합재료의 유전특성에 미치는 계면 결합제의 효과)

  • Kwak, Young-Soon;Hong, Young-Ki;Sin, Joong-Hong;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.353-355
    • /
    • 1989
  • Composite insulating materials have the defect of interface. To minimize the defect of interface of GFRP (glass cloth reinforced plastics), coupling agent is treated. In this paper, the method of coupling agent treatment has been studied. The result shows that the optimum electric and mechanical properties is obtained for the sample treated on the glass fiber with 0.3% amino silane water solution.

  • PDF

Flexural Behavior of Glass Fiber Reinforced Plastic Pipes (유리섬유 강화 플라스틱관의 휨거동에 관한 연구)

  • 장동일;고재원
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.187-194
    • /
    • 1993
  • 본 논문에서는 유리섬유의 적층수, 유리섬유의 배향각도에 대한 유리섬유 강화 플라스틱(Glass Fiber Reinforced Plastics ; GFRP)의 인장거동 변화를 고찰하고, 이들의 상관관계를 규명하기 위하여 일련의 GFRP 시험체에 대하여 인장실험을 수행하였다. 시험체는 폭12.5mm, 길이 60mm크기로 일정하게 제작하였으며, 시험체에 대하여 인장실험을 수행하였다. 시험체 제작시 유리섬유로 적층수는 14, 22, 30층, 유리섬유의 배향각도는 0$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$로 하였다. 인장실험시 각 시험체의 파괴양상, 극한하중 및 하중변화에 대한 인장변형율을 조사하였고, 이들 결과를 토대로 유리섬유의 적층수와 배향각도에 따른 GFRP의 극한하중, 응력-변형율 선도 및 탄성계수 등을 비교 분석하였다. 한편 본 논문에서는 유리섬유의 적층수, 직경 변화에 따른 GFRP관의 파괴거동을 고찰하기 위하여 4점 재하법에 의한 GFRP관의 휨파괴실험을 수행하였다. 실험에 사용된 시험체는 길이 1200mm로 하였으며, 유리섬유의 적층수를 30, 35, 40층, 관의 직경을 50, 100, 150mm로 하였다. 파괴실험시 각 시험체의 하중변화에 대한 휨 변형율, 중앙점 처짐량 및 항복하중을 측정하였고, 이들 결과를 토대로 유리섬유으 적층수와 관의 직경에 따라 GFRP관의 항복하중 및 파괴에너지를 비교 분석 하였으며, 항복시 파괴에너지를 추정할 수 있는 제안식을 유도하였다.