• Title/Summary/Keyword: Glass/epoxy

Search Result 589, Processing Time 0.029 seconds

Characterizing the damage mechanisms in mode II delamination in glass/epoxy composite using acoustic emission

  • Dastjerdi, Parinaz Belalpour;Ahmadi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.545-553
    • /
    • 2018
  • Mode II delamination propagation is an important damage mode in laminated composites and this paper aims to investigate the behavior of this damage in laminated composite materials using acoustic emission (AE) technique. Three different lay-ups of glass/epoxy composites were subjected to mode II delamination propagation and generated AE signals were recorded. In order to investigate the propagation of delamination behavior of these specimens, AE signals were analyzed using Wavelet Packet Transforms (WPT) and Fast Fourier Transform (FFT). In addition, conventional AE analyses were used to enhance understanding of the propagation of delamination damage. The results indicate that different fracture mechanisms were the main cause of the AE signals. The dominant mechanisms in all the specimens were matrix cracking, fiber/matrix debonding and fiber breakage, with varying percentage of the damage mechanisms for each lay-up. Scanning Electron Microscopy (SEM) observations were in accordance to the AE results.

Dynamic Strength Variation of Glass Epoxy Composites with respect to Strain Rates (변형률 속도에 따른 유리섬유 에폭시 복합재료의 동적 강도 변화)

  • 임태성;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.83-88
    • /
    • 2001
  • In this study, the tensile and compressive tests of glass fiber epoxy composites were performed to measure the strength variation with respect to strain rates of 1-200 $\textrm{sec}^{-1}$. In addition, tensile and compressive tests of 50-200 $\textrm{sec}^{-1}$ strain rates were conducted at a low temperature ($-60^{\circ}C$) to investigate the effects of temperature on the strength variation. From the test results, it was found that the tensile and compressive strengths increased about 100% and 70%, respectively, at the strain rates of 10-100 $\textrm{sec}^{-1}$ compared to the quasi-static strengths while the strengths were little affected by the environmental temperature variation.

  • PDF

Study on the Evaluation of the Interfacial Strength in the Fiber Reinforced Composites (섬유강화 복합재료에서 계면강도의 평가에 관한 연구)

  • Lee, D.B.;Moon, C.K.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • 섬유강화 복합재료의 계면 강도는 강화재와 메트릭스간의 계면특성, 강화용 섬유의 표면처리 및 섬유간의 거리 등에 많은 영향을 받는다. 본 연구에서는 섬유간의 거리가 섬유강화 복합재료의 계면특성에 미치는 영향을 고찰하기 위해, E glass fiber/epoxy 복합재료의 시험편을 제작하고, 섬유의 표면처리 및 섬유파괴가 이웃하는 섬유파괴에 영향을 미치는 거리에 대해 고찰하였다. E glass fiber/epoxy 복합재료의 계면 전단강도는 섬유간 거리 $0{\sim}50{\mu}m$ 사이에서는 섬유의 표면처리와는 관계없이 섬유간 거리가 증가할수록 증가하였고, 섬유간 거리 $50{\mu}m$ 이상에서는 섬유간거리에 관계없이 계면전단강도는 일정하였다.

  • PDF

Prediction of Thermal conductivities of 3-D braided glass/epoxy composites using a thermal-electrical analogy (3차원 브레이드 유리섬유/에폭시 복합재료의 열전도도 예측에 관한 연구)

  • 정혁진;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.52-55
    • /
    • 2002
  • This paper examines the effective thermal conductivity of 3-D braided glass/epoxy composites. 3-D braided composites have a number of advantage over conventional laminate composites, including through-thickness reinforcement, and high damage tolerance and processability. The thermal properties of composites depend primarily on the microstructure of the braided preform and properties of constituent materials. A thermal resistance network model based on structure of the braided preform is proposed by using thermal-electrical analogy. In order to affirm the applicability theses solutions, thermal conductivities of 3-D braided glass/epoxy composites are measured

  • PDF

Dielectric Relaxation of Siloxane-Epoxy Copolymers

  • Kim, Chy-Hyung;Shin, Jae-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.413-416
    • /
    • 2002
  • The dielectric responses of 10 and 40 wt% siloxane-epoxy copolymers were investigated in temperature range near the glass transition of polydimethylsiloxane at which the dielectric transitions were also observed. On the other hand, the pure epoxy did not show any dielectric transition in measurement temperature range -90 to 150 $^{\circ}C.$ The experimental data showed that for the copolymer investigated, the temperature-frequency super-position principle could be applied to the dielectric response. From the Cole-Cole equation, the dielectric relaxation of the 10 wt% siloxane near the glass transition temperature resulted in a broad distribution with ${\beta}=$ 0.19 and the relaxation time at -70 $^{\circ}C$ was 5.3 ${\times}$ $10^{-2}$s. The glass transition temperature, 188 K, was estimated by using WLF relation, which was consistent with the data presented in experiment.

A Study on the Physical Property of Epoxy Resin Due to After-Curing Condition (후경화 조건에 따른 에폭시 수지의 물성에 관한 연구)

  • Han, Jeong-Young;Kim, Myung-Hun;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.976-981
    • /
    • 2012
  • In this study, hardness, microstructure and temperature of glass transition are measured respectively by using SEM (Scanning electron microscope) and DSC (Differential scanning calorimeter) to analyze the effects on material properties by after-curing in the epoxy resin. As the result of hardness test according to the after-curing conditions, the higher the temperature of after-curing, hardness and heat resistance are, the higher hardness is. As a result of microstructure for each specimen by SEM, it could be confirmed that the specimen with after-curing has more dense fracture surface. It is also found that temperatures of glass transitions by DSC are comparatively higher in the specimens with after-curing, and the differences between after-curing conditions are negligible.

A Study on Dielectric Properties of Printed Circuit Board Materials with Variation of Frequency and Temperature (온도 및 주파수 변화에 따른 프린트 배선기판의 유전특성 연구)

  • 박종성;김종헌;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.773-777
    • /
    • 1998
  • This paper presents the results of measured permittivity of PCB sheet material in the frequency range of 0.1 ~ 2[㎓] and temperature range of 25~ 85[>$^{\circ}C$]. Microstrip lines with different physical length are implemented to measure the attenuation and phase shift of the signals through these lines. The loss factor of glass-epoxy and teflon could by calculated with the measured dielectric constant and the attenuation. From the experiment, the glass-epoxy was more influenced by temperature and frequency than teflon. The average dielectric constants of glass-epoxy and teflon within the measured frequency range are 4.48 and 2.18, respectively.

  • PDF

High-Gain and Wideband Microstrip Antenna Using Glass/Epoxy Composite and Nomex Honeycomb (유리섬유/에폭시 복합재료와 허니컴을 이용한 고성능의 마이크로스트립 안테나 설계)

  • You C.S.;Hwang W.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper we developed Composite-Smart-Structures(CSS) using sandwich structure composed of Glass/Epoxy laminates and Nomex honeycomb and microstrip antenna. Transmission/reflection theory shows that antenna performances can be improved due to multiple reflection by Glass/Epoxy facesheet, and honeycomb is used for air gap between antenna and facesheet. Stacked radiating patches are used for the wideband. Facesheet and honeycomb thicknesses are selected considering both wideband and high gain. Measured electrical performances show that CSS has wide bandwidth over $10\%$ and higher gain by 3.5dBi than initially designed antenna, and no doubt it has excellent mechanical performances by sandwich effect given by composite laminates and honeycomb core. The CSS concept can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers, promising innovative future communication technology.

  • PDF

A Study on Failure Mechanisms of Composite Tubes with Woven Fabric Carbon, Glass and Kevlar/epoxy Under Compressive Loadings (직조된 탄소, 유리 및 케블라 섬유 복합소재 튜브의 압축하중하에서 파손 메커니즘 분석 연구)

  • Kim, Jung-Seok;Yoon, Hyuk-Jin;Lee, Ho-Sun;Kwon, Tae-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.590-596
    • /
    • 2009
  • In this study, the failure modes and energy absorption characteristics of four different kinds of circular tubes made of carbon, glass, Kevlar and carbon-Kevlar hybrid fibres composites with epoxy resin have been evaluated. To achieve these goals, compressive tests were conducted for the tubes under 10mm/min loading speed. Based on the test results, the carbon/epoxy tube showed the best energy absorption capability, while carbon-Kevlar/epoxy tubes were worst. In the failure mode during crushing, both of the carbon/epoxy tubes and the glass/epoxy tubes were crushed by brittle fracturing mode. The Kevlar/epoxy tubes were collapsed by local buckling mode like steel, while the carbon-Kevlar hybrid tubes were collapsed by mixed mode of local buckling and lamina bending.

Statistical Evaluation for Residual Strength of Impacted Composite Materials (충격손상 복합재료의 잔류강도저하거동에 대한 통계적 평가)

  • Kang, Ki-Weon;Lee, Seung-Pyo;Lee, Jin-Soo;Koh, Byung-Kab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.426-434
    • /
    • 2010
  • This study is experimentally performed to evaluate the strength reduction behavior and its statistical properties of plain woven glass/epoxy composites. The results indicate that the major impact damage of plain woven glass/epoxy composites is the fiber breakage and matrix crack, whereas the dominant impact damage of unidirectional carbon/epoxy laminates is the delamination, which depends on the stacking sequence. The residual strength prediction models, previously proposed on unidirectional laminates, are applied to evaluate the residual strength of plain woven glass/epoxy composites with impact damage. Among these models, the results by Caprino and Avva's model have a good agreement with the experimental results. To investigate the variability of residual strength of the impacted composite materials, a statistical model was proposed and its results were in conformance with the experimental results regardless of their thickness.