A Study on Failure Mechanisms of Composite Tubes with Woven Fabric Carbon, Glass and Kevlar/epoxy Under Compressive Loadings

직조된 탄소, 유리 및 케블라 섬유 복합소재 튜브의 압축하중하에서 파손 메커니즘 분석 연구

  • 김정석 (한국철도기술연구원, 철도구조연구실) ;
  • 윤혁진 (한국철도기술연구원, 철도구조연구실) ;
  • 이호선 (한국철도기술연구원, 철도구조연구실) ;
  • 권태수 (한국철도기술연구원, 철도구조연구실)
  • Published : 2009.08.30

Abstract

In this study, the failure modes and energy absorption characteristics of four different kinds of circular tubes made of carbon, glass, Kevlar and carbon-Kevlar hybrid fibres composites with epoxy resin have been evaluated. To achieve these goals, compressive tests were conducted for the tubes under 10mm/min loading speed. Based on the test results, the carbon/epoxy tube showed the best energy absorption capability, while carbon-Kevlar/epoxy tubes were worst. In the failure mode during crushing, both of the carbon/epoxy tubes and the glass/epoxy tubes were crushed by brittle fracturing mode. The Kevlar/epoxy tubes were collapsed by local buckling mode like steel, while the carbon-Kevlar hybrid tubes were collapsed by mixed mode of local buckling and lamina bending.

본 연구에서는 탄소, 유리, 케블라 및 탄소-케블라 하이브리드 섬유로 제작된 원형튜브를 이용하여 각 소재별 에너지 흡수특성과 파손메커니즘을 규명하였다. 이를 위해 각 튜브에 대한 10mm/min의 준정적 압축시험을 수행하였다. 시험결과 탄소섬유 튜브가 가장 에너지 흡수특성이 우수했으며 탄소-케블라 하이브리드 섬유 튜브가 가장 낮은 에너지 흡수율을 보였다. 또한, 각 소재별 에너지 흡수메커니즘을 분석한 결과 탄소 및 유리섬유튜브는 취성파괴 모드로 압축되었다. 또한, 케블라 섬유 튜브는 국부좌굴에 의한 접힘모드가 지배적이고, 탄소와 케블라 하이브리드 섬유 튜브의 경우 단층굽힘과 국부좌굴모드가 혼합되어 나타났다.

Keywords

References

  1. 김정석, 정종철, 한정우, 이상진, 김승철, 서승일(2006),"한국형틸팅열차용 복합재 차체의 하중적재에 따른 구조적 특성고찰," 한국철도학회지, 제9권 제3호, pp. 251-256
  2. Kim, J. S. and Cheong, S. K.(2007), "A Study on the Low Velocity Impact Response of Laminates for Composite Railway Bodyshells," Composite Structures, Vol. 77, pp. 484-492 https://doi.org/10.1016/j.compstruct.2005.08.020
  3. Kim J. S., Cheong, J. C. and Lee, S. J.(2008), "Numerical and Experimental Studies on the Deformational Behavior of a Composite Train Carbody of the Korean Tilting Train," Composite Structures, Vol. 81, pp. 225-241
  4. Thornton, P. H. and Edwards, P. J.(1982). "Energy Absorption in Composite Tubes," Journal of Composite Materials, Vol. 16, November, pp. 521-544 https://doi.org/10.1177/002199838201600606
  5. Farley, Gary L.(1983), "Energy Absorption of Composite Materials," Journal of Composite Materials, Vol. 17, May, pp.267-279 https://doi.org/10.1177/002199838301700307
  6. Farley, Gary L., Bird, Richard K., and Modlin, John T.(1989), "The Role of Fiber and Matrix in Crash Energy Absorption of Composite Materials," Journal of the American Helicopter Society, April, pp. 52-58 https://doi.org/10.4050/JAHS.34.52
  7. Warrior, N. A., Turner, T. A., Cooper, E. and Ribeaux, M.(2008), "Effects of Boundary Conditions on the Energy Absorption of Thin-walled Polymer Composite Tubes Under axial Crushing," Thin-Walled Structures Vol. 46, pp. 905-913 https://doi.org/10.1016/j.tws.2008.01.023
  8. Chasemnejad, H., Blackman, B. R. K., Hadavinia, H., and Sudall, B.(2009), "Experimental Studies on Fracture Characteri-zations and Energy Absorption of GFRP Composite Box Structures," Composite Structures Vol. 88, pp. 253-261 https://doi.org/10.1016/j.compstruct.2008.04.006
  9. Hadavinia, H. and Ghasemnejad, H.(2009), "Effects of Mode-I and Mode-II Interlaminar Fracture Toughness on the Energy Absorption of CFRP Twill/weave Composite Box Sections," Composite Structures Vol. 89, pp. 303-314 https://doi.org/10.1016/j.compstruct.2008.08.004