• Title/Summary/Keyword: Glandular and non-glandular types

Search Result 17, Processing Time 0.025 seconds

Scanning Electron Microscopic Studies on Leaf Surface Trichomes in Mulberry and Its Influence on Rearing Performance of Silkworm Bombyx mori L.

  • Kesavacharyulu, K.;Kumar, Vineet;Sarkar, A.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.1
    • /
    • pp.33-41
    • /
    • 2004
  • The type of trichomes, their density and pattern of distribution on leaves of 16 genotypes of mulberry, belonging to both diploid and polyploid categories, were studied by scanning electron microscope. The present investigation was undertaken to find out the relationship of physical attributes, especially the density and trichome types with higher acceptability and better rearing performance by the silkworm Bombyx-mori L. Two types of trichomes glandular and non-glandular types were observed on both the leaf surfaces of all the mulberry genotypes studied. In general, greater densities of trichomes were observed on the abaxial surface than the adaxial surface of leaves in most of the genotypes. Distribution of glandular trichomes were more in abaxial surface and non-glandular trichomes were more in adaxial surface. Overall, distribution of glandular and non-glandular trichomes per unit area of leaf did not follow any regular pattern. When leaves of those genotypes were fed to silkworms, trichome density was found to be significantly negatively correlated with the survival of larvae i.e., effective rate of rearing, but trichome density did not influence the economic characters of rearing. As the distribution of glandular trichomes (GT) and non-glandular trichomes (NGT) did not follow any definite pattern, no relation could be established between the GT and NGT densities with silkworm rearing performance. However, the ratio of GT and NGT in a particular genotype influenced the rearing parameters, higher the ratios better the rearing performance. High GT and NGT ratio (>1.00) was found positively significant when correlated with economic parameters viz., larval weight, single cocoon weight and single shell weight. The study is useful in screening different mulberry genotypes for their better acceptability to silk-worm and higher rearing performance at the early stage of selection without actually conducting the rearing.

Morphological Classification of Trichomes Associated with Possible Biotic Stress Resistance in the Genus Capsicum

  • Kim, Hyun-Jung;Seo, Eun-Young;Kim, Ji-Hyun;Cheong, Hee-Jin;Kang, Byoung-Cheorl;Choi, Do-Il
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • Trichomes are specialized epidermal structure having the functions of physical and chemical block against biotic and abiotic stresses. Several studies on $Capsicum$ species revealed that virus and herbivore resistance is associated with trichome-formation. However, there is no research on the structural characterization of trichomes developed on the epidermis of $Capsicum$ spp. Thus, this study attempts to charaterize the trichome morphologies in 5 species of $Capsicum$ using a Field Emission Scanning Electron Microscopy (FESEM). Six main trichome types were identified by their morphology under FESEM. Both glandular and non-glandular types of trichomes were developed on the epidermal tissues of $Capsicum$ spp. The glandular trichome were further classified into type I, IV and VII according to their base, stalk length, and stalk. Non-glandular trichomes were also classified into type II, III, and V based on stalk cell number and norphology. Almost all the species in $C.$ $chinense$ and $C.$ $pubescens$ had glandular trichomes. To our knowledge, this is the first study on classification of trichomes in the genus $Capsicum$ and, our results could provide basic informations for understanding the structure and function of trichomes on the epidermal differentiation and association with biotic stress tolerance.

Developmental Patterns of Glandular Trichomes in Leaves of Vitex negundo (좀목형 엽육 표피조직의 분비모 발달 양상)

  • Park, Jae-Yong;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.101-108
    • /
    • 2010
  • Vitex negundo is an aromatic plant which releases a unique scent due to the presence of essential oil stored presumably within glandular trichomes. The focus of this research was to study developmental patterns of glandular trichomes in Vitex negundo leaves using electron microscopy. There are two types of glandular trichomes which develop on the leaf epidermis of Vitex negundo, peltate glandular type (PT) and capitate glandular type (CT). Structural features differ significantly depending on size and density, formation of secretory cavity, plastid, etc during developmental stages. In young leaves, undifferentiated PTs are densely distributed in the upper epidermis, but are not externally exposed in the lower epidermis because they are covered by non-glandular simple trichomes. Upon leaf development, PTs and CTs show clear structural differentiation in the upper and lower epidermis. PTs are composed of up to eight head cells (ca. 35~40 ${\mu}m$) and one stalk cell (ca. 5 ${\mu}m$), while CTs are composed of four head cells (ca. 10~15 ${\mu}m$) and 1~2 stalk cells (ca. 10 ${\mu}m$). Although secretory cavities develop on the secretory head cells, their size, structure, and formation proceed very differently depending on trichome type. In early development of PT, a large cavity with numerous secretory vesicles form rapidly from the head cells. In CT, however, only a small secretory cavity is formed, slowly relative to PT, without secretory vesicles. The PTs are considered to play an important role in releasing the aromatic components of Vitex negundo.

Development of Epidermal Idioblasts in the Reproductive Structures of Lycopersicon esculentum (토마토 (Lycopersicon esculentum) 표피조직의 이형세포 분화 발달)

  • Park, Eun-Hee;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.34 no.4
    • /
    • pp.295-303
    • /
    • 2004
  • Plants of Lycopersicon esculentum, containing various organic compounds, are known to develop idioblasts in their epidermis. Lycopersicon esculentum have long been investigated in many areas, but structural aspects of the epidermis of various organs have not been carried out in detail. Thus, the present study attempted to reveal the patterns of idioblast development, particularly those of the reproductive organs, in L. esculentum epidermis using scanning electron microscopy. The present study mainly focused on patterns of the stomata and trichome types. Two types of stomata were developed in the flowers and fruits: anomocytic stomata (stomata type I) were distributed normally throughout the epidermis, whereas actinocytic raised stomata (stomata type II) were found variously in different epidermal tissues. For the trichomes, both glandular and non-glandular types were developed in the epidermis. The former included peltate glandular trichomes having four head cells (trichome type I) and capitate multicellular glandular trichomes (trichome type II). The latter included non-glandular short trichomes (trichome type III) and considerably elongated trichomes with basal rosette cells (trichome type IV). In paticular, the raised stomata were well-developed in the peduncles and the peltate glandular trichomes were prominent in the sepal and ovary epidermis. Transmission electron microscopy on the ontogeny and ultrastructural differentiation of these idioblasts, associated with the current result, will aid us in better understanding of the structure and functional relationship in the epidermal differentriation of Lycopersicon esculentum.

Trichome Type and Development in Leaves of Althaea rosea (접시꽃 (Althaea rosea) 엽육표피에서의 모용의 분화 발달)

  • Kim, In-Sun;Lee, Seung-Hee
    • Applied Microscopy
    • /
    • v.35 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • Plant epidermis consists of relatively unspecialized cells and more specialized cells of various structure and function. Trichomes are specialized cells originated from the epidermis and much attention has been paid to the plants developing trichomes with peculiar structure and function. The present study has been undertaken to examine the trichome type noticed in the leaf epidermis of Althaea rosea using scanning electron microscopy. Four types, namely simple, short-and long-tufted, and glandular hairs, were detected in their epidermis. Their Distribution, frequency and structure varied by the development and epidermal surface. The most frequently distinguished type was the tufted ones growing in young leaves of the abaxial epidermis, while the simple hairs were rare throught the examination. The short-tufted hairs branched up to seven times having each branchlet about $160{\sim}210{\mu}m$ in length at maturity. The long-tufted hairs exhibited up to ten branchlets, where branchlets could reach up to $900{\sim}1,000{\mu}m$ long when fully expanded. Glandular trichome was the peltate type comprising $1{\sim}2$ secretory head cells, 2 stalk cells and a basal cell. The short peltate glandular hairs, usually not exceeding $40{\mu}m$, differentiated more along the areoles in the adaxial epidermis. The function of these trichomes in A. rosea has been still obscure, but it has been speculated that they probably play a role in protection; non-glandular ones possibly providing a defense against insects and secretory glandular type participating in chemical defense. Structural features of these trichomes at cellular level will be discussed in the following study of transmission electron microscopy.

The Taxonomic Consideration of Leaf Epidermal Microsturcture in Glechoma L. (Nepetinae, Lamiaceae) (긴병꽃풀속(Glechoma L., 꿀풀과)의 잎표피 미세구조에 대한 분류학적 검토)

  • Jang, Tae-Soo;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.37 no.3
    • /
    • pp.239-254
    • /
    • 2007
  • A comparative micromorphological study was examined on the leaves of the genus Glechoma and related genera (Nepetinae, Lamiaceae) by scanning electron microscopy (SEM) in order to evaluate their significance in the taxonomy. The leaves of taxa Marmoritis, Nepeta sect. Glechomanthe, G. hederacea var. longituba (Korea) are revealed amphistomatic type, while the remnants of taxa had hypostomatic type. The size range of the guard cells is $12.50-28.75{\times}9.17-21.25{\mu}m$: the smallest one was found in M. pharicus ($12.50-15.83{\times}9.17-11.25{\mu}m$), while the largest one was measured to G. hederacea var. longituba (Korea: $28.75-28.88{\times}21.25-21.38{\mu}m$). The stomatal type of genera Agastache, Dracocephalum was mostly diacytic, however for the rest rarely together with anisocytic and anomocytic, except G. hederaca var. longituba (Korea), Meehania urticifolia by having combined with diacytic and anomocytic. The shapes of epidermal cells are differ from in abaxial and adaxial side, and dived with two types (e.g., platelet, stripe pattern). Five types (three glandular, two non-glandular hairs) of trichomes are distributed in leaves. Among trichomes, long and stalk capitates glandular trichome, subsessile glands are different from studied taxa so that leaf micromorphological characters are significance features in the taxonomy.

A systematic study of Glechoma L. (Lamiaceae) based on micromorphological characters and nuclear ribosomal ITS sequences (미세구조학적 형질 및 핵 리보솜 DNA의 ITS 염기서열에 의한 긴병꽃풀속(꿀풀과)의 계통분류학적 연구)

  • Jang, Tae-Soo;Lee, Joongku;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.44 no.1
    • /
    • pp.22-32
    • /
    • 2014
  • The petal and sepal micromorphology of five species of Glechoma (Lamiaceae) was investigated to evaluate their taxonomic significance, and a molecular phylogeny using the sequences of internal transcribed spacers (ITS) regions of nuclear ribosomal DNA was carried out to resolve their phylogenetic relationships. Stomatal complexes were mostly found in the inner and outer part of the sepal from all investigated taxa, and the size length of the guard cell was variable among the taxa. Five types of trichomes (uni-cellular non-glandular trichome, multi-cellular non-glandular trichome, short-stalked capitate glandular trichome, long-stalked capitate glandular trichome, and peltate glandular trichome) were variable among the taxa as well as their distribution and density. In molecular phylogenetic studies, the genus Glechoma was composed of three geographically distinct major monophyletic groups (Europe-U.S.A., China-Korea, Japan). G. longituba in Korea and China formed well-supported monophyletic group. G. hederacea in Europe and U.S.A. formed a monophyletic and well-supported clade with G. sardoa, which are endemic species in Italy, with G. hirsuta falling as a sister to this clade. However, G. grandis did not form any phylogenetic relationships with the remaining taxa. The ITS analyses provided taxonomic boundaries of taxa in Glechoma although the petal and sepal micromorphological characters provided weak evidences of the systematic value. As further studies, incorporating more DNA regions to the matrix including other additional morphological analysis will be significant to provide clearer taxonomic structure in Glechoma.

Taxonomic significance of the leaf micromorphology in the tribe Sorbarieae (Spiraeoideae: Rosaceae) (쉬땅나무족(조팝나무아과: 장미과) 잎표피 미세형태학적 형질의 분류학적 유용성)

  • Song, Jun-Ho;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.2
    • /
    • pp.199-212
    • /
    • 2016
  • A comparative study of leaf epidermal microstructures in the tribe Sorbarieae (Adenostoma: 3 spp., Chamaebatiaria: 1 sp., Sorbaria: 11 spp., Spiraeanthus: 1 sp.) including related genera Gillenia (2 spp.) and Lyonothamnus (2 spp.) was carried out using scanning electron microscopy (SEM) in order to evaluate their significance in taxonomy. The leaves of Adenostoma, Chamaebatiaria, and Spiraeanthus were amphistomatic, whereas Gillenia, Lyonothamnus, and Sorbaria were hypostomatic. The size range of the guard cells is $7.84-48.7{\times}5.86-38.6{\mu}m$; the smallest one was found in Sorbaria tomentosa var. tomentosa ($7.84-11.8{\times}6.84-10.5{\mu}m$), while the largest measured example was Adenostoma fasciculatum var. obtusifolium ($30.3-48.7{\times}18.8-38.6{\mu}m$). Anomocytic stomata complex were the most frequent type (rarely cyclocytic), with usually both anomocytic and actinocytic types occurring in one leaf. On the surfaces, both the adaxial and abaxial anticlinal walls of the subsidiary cells vary (e.g., straight/curved, undulate, sinuate). Four types (unicellular non-glandular trichome, stellate, glandular trichome, pustular glandular trichome) of trichomes are found in the leaves. The epicuticular wax can be divided two types: membraneous platelets (Lyonothamnus) and platelets (Sorbaria arborea var. arborea, S. arborea var. subtomentosa, S. kirilowii, S. tomentosa var. tomentosa, Spiraeanthus schrenkianus). The trichome diversity (in particular, stellate, gland) and the existence of epicuticular wax may have taxonomic significance, although the leaf epidermal micromorphological characteristics do not provide synapomorphy in this tribe. These leaf micromorphological features are most likely better understood in the Sorbarieae when used in conjunction with external morphological characters.

The taxonomic implication of leaf micromorphological characteristics in the genus Aruncus (Rosaceae) (눈개승마속(장미과) 잎 표피 미세형태학적 형질 및 분류학적 유용성)

  • OAK, Min-Kyeong;SONG, Jun-Ho;HONG, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.2
    • /
    • pp.143-152
    • /
    • 2018
  • A comparative study of leaf epidermal microstructures in genus Aruncus (two species, five varieties) was carried out using scanning electron microscopy in order to evaluate their significance in terms of taxonomy. All of the leaves of the taxa studied here were amphistomatic with undulate anticlinal walls, and smooth and flat periclinal walls on both surfaces. The size range of the stomata complex is $8.95-21.97{\times}7.50-16.99{\mu}m$: the largest one was found in Aruncus dioicus var. astilboides (average $18.01{\times}13.47{\mu}m$) and the smallest was measured and determined to be A. gombalanus (average $11.11{\times}8.94{\mu}m$). An anomocytic stomata complex was found in all of the studied taxa. The stomatal frequency on average was $27.54/0.05mm^2$; it is highest in A. gombalanus ($60.4/0.05mm^2$) and lowest in A. dioicus var. acuminatus ($11.6/0.05mm^2$). Two types (short stalked capitate glandular trichome and non-glandular trichome) of trichomes are found in the leaves. The non-glandular trichome was divided into three types based on the presence and degree of development of subsidiary cells. Anomocytic stomata of the hypostomatic type and the distribution pattern of capitate glandular trichomes were the major characters in this genus. The stomata size and frequency, the epidermal cell structure, the trichome type and the distribution pattern may have diagnostic importance among the taxa in the genus. Our leaf micromorphological results provide useful information for the taxonomic revision of the genus Aruncus.

Structural Features of Various Trichomes in Vitex negundo during Development (방향성 좀목형(Vitex negundo)모용의 구조적 분화발달)

  • Lee, Seung-Hee;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.36 no.1
    • /
    • pp.35-45
    • /
    • 2006
  • Plants of Vitex negundo are known to develop numerous trichomes throughout their body, where certain trichome types have been believed to be one of the plausible structures for the unique scents. In the current study. structural aspects of the trichomes have been examined in leaves and stems of Vitex negundo using TEM and SEM. Trichome types as well as structural changes that occurred in certain trichomes during secretion have been mainly focused. Three type of glandular trichomes and two types of non-glandular trichomes were developed in the epidermis of young and mature Vitex negundo plants. The glandular trichomes included the peltate type (Type 1), the capitate type (Type 2), and degraded capitate type (Type 3), whereas the non-glandular warty trichomes contained the multicellular (Types 4) and unicellular type (Type 5). Type 1 and 2 consisted of head and stalk cells, but their number and size were different. One secretory cavity was formed from the four head cells in the former, but only two head cells were involved in the latter. The cytoplasmic density in the head cell was quite high and in particular, sER and Golgi bodies were well developed. At initiation of their development, the cuticle layer of the head cells separated from the outer tangential wall to form a secretory cavity. Subsequently the cavity expanded acropetally and a large number of secretory vesicles continuously produced from the head cells until they filled the entire cavity. The cavity contained materials that would be soon discharged into intercellular spaces and/or into the air. The cavity began to decrease the volume by contracting at initial secretion but degrade rapidly within short time. It has been suggested that the mode of secretion in V. negundo is probably the eccrine secretion, since no break or rupture of the cavity has been observed during examination. Contrastingly Type 3 exhibited deterioration of the head cell at early stage. Type 4 was about $110{\sim}190{\mu}m$ long, consisting of $2{\sim}3$ cells, and distributed more in the adaxial epidermis compared to the abaxial surface. However, $20{\sim}30{\mu}m$ long Type 5 was extremely dense in both epidermis. Among several trichome types, Type 1 and 2 probably play an important role in discharging unique aromatic scents in plants of V. negundo.