Browse > Article
http://dx.doi.org/10.7780/kjrs.2011.27.5.543

Microwave Radiation Characteristics of Glacial Ice in the AMSR-E NASA Team2 Algorithm  

Han, Hyang-Sun (Department of Geophysics, Kangwon National University)
Lee, Hoon-Yol (Department of Geophysics, Kangwon National University)
Publication Information
Korean Journal of Remote Sensing / v.27, no.5, 2011 , pp. 543-553 More about this Journal
Abstract
Sea ice concentration calculated from the AMSR-E onboard Aqua satellite by using NASA Team2 sea ice algorithm has proven to be very accurate over sea ice in Antarctic Ocean. When glacial ice such as icebergs and ice shelves are dominant in an AMSR-E footprint, the accuracy of the ice concentration calculated from NASA Team2 algorithm is not well maintained due to the different microwave characteristics of the glacial ice from sea ice. We extracted the concentrations of sea ice and glacial ice from two ENVISAT ASAR images of George V coast in southern Antarctica, and compared them with NASA Team2 sea ice concentration. The result showed that the NASA Team2 algorithm underestimates the concentration of glacial ice. To interpret the large deviation of estimation over glacial ice, we analyzed the characteristics of microwave radiation of the glacial ice in PR(polarization ratio), GR(spectral gradient ratio), $PR_R$(rotated PR), and ${\Delta}GR$ domain. We found that glacial ice occupies a unique region in the PR, GR, $PR_R$, and ${\Delta}GR$ domain different from other types of ice such as ice type A, B, and C, and open water. This implies that glacial ice can be added as a new category of ice to the AMSR-E NASA Team2 sea ice algorithm.
Keywords
glacial ice; sea ice; microwave radiation characteristics; AMSR-E; NASA Team2 algorithm;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Makynen, M.P., B. Cheng, M.H. Simila, T. Vihma, and M.T. Hallikainen, 2007. Comparisons between SAR backscattering coefficient and results of a thermodynamic snow/ice method for the Baltic Sea land-fast sea ice, IEEE Transactions on Geoscience and Remote Sensing, 45(5): 1131-1141.   DOI
2 Markus, T., and D.J. Cavalieri, 2000. An enhancement of the NASA team sea ice algorithm, IEEE Transactions on Geoscience and Remote Sensing, 38(3): 1387-1398.   DOI   ScienceOn
3 Markus, T., D.J. Cavalieri, A.J. Gasiewski, M. Klein, J.A. Maslanik, D.C. Powell, B.B. Stankov, J.C. Stroeve, and M. Sturm, 2006. Microwave signatures of snow on sea ice: Observations, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3081-3090.   DOI
4 Oppenheimer, M., 1998. Global warming and the stability of the West Antarctic Ice Sheet, Nature, 393: 325-332.   DOI   ScienceOn
5 Picard, G. and M. Fily, 2006. Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours, Remote Sensing of Environment, 104(3): 325-336.   DOI   ScienceOn
6 Powell, D.C., T. Markus, D.J. Cavalieri, A.J. Gasiewski, M. Klein, J.A. Maslanik, J.C. Strove, and M. Sturm, 2006. Microwave signatures of snow on sea ice: Modeling, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3091-3102.   DOI
7 Rignot, E. and R.H. Thomas, 2002. Mass balance of polar ice sheets, Science, 297(5586): 1502-1506.   DOI
8 Tedesco, M., and J. Miller, 2007. Observations and statistical analysis of combined active-passive microwave space-borne data and snow depth at large spatial scales, Remote Sensing of Environment, 111(2-3): 382-397.   DOI   ScienceOn
9 Velicogna, I., 2009. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE, Geophysical Research Letters, 36, L19503, doi:10.1029/2009GL040222.   DOI
10 Vinnikov, K.Y., A. Robock, R.J. Stouffer, J.E. Walsh, C.L. Parkinson, D.J. Cavalieri, J.F.B. Mitchell, D. Garrett, and V.F. Zakharov, 1999. Global warming and northern hemisphere sea ice extent, Science, 286(5446): 1934-1937.   DOI
11 Cavalieri, D.J., T. Markus, D.K. Hall, A.J. Gasiewski, M. Klein, and A. Ivanoff, 2006. Assessment of EOS Aqua AMSR-E arctic sea ice concentration using Landsat-7 and airborne microwave imagery, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3057-3069.   DOI
12 Comiso, J.C., D.J. Cavalieri, C.L. Parkinson, and P. Gloersen, 1997. Passive microwave algorithms for sea ice concentration: A comparison of two techniques, Remote Sensing of Environment, 60(3): 357-384.   DOI   ScienceOn
13 Comiso, J.C., D.J. Cavalieri, and T. Markus, 2003. Sea ice concentration, ice temperature, and snow depth using AMSR-E data, IEEE Transactions on Geoscience and Remote Sensing, 41(2): 243-252.   DOI   ScienceOn
14 Fricker, H.A., N.W. Young, I. Allison, and R. Coleman, 2002. Iceberg calving from the Amery ice shelf, East Antarctica, Annals of Glaciology, 34(1): 241-246.   DOI   ScienceOn
15 Hanna, E., P. Huybrechts, K. Steffen, J. Cappelen, R. Huff, C. Shuman, T. Irvine-Fynn, S. Wise, and M. Griffiths, 2008. Increased runoff from melt from the Greenland ice sheet: A response to global warming, Journal of Climate, 21(2): 331-341.   DOI   ScienceOn
16 Hattermann, T. and A. Levermann, 2010. Response of Southern Ocean circulation to global warming may enhance basal ice shelf melting around Antarctica, Climate Dynamics, 35(5): 741-756.   DOI   ScienceOn
17 Jiang, L., J. Shi, S. Tjuatja, J. Dozier, K. Chen, and L. Zhang, 2007. A parameterized multiplescattering model for microwave emission from dry snow, Remote Sensing of Environment, 111(2-3): 357-366.   DOI
18 Kelly, R.E., A.T. Chang, L. Tsang, and J.L. Foster, 2003. A prototype AMSR-E global snow area and snow depth algorithm, IEEE Transactions on Geoscience and Remote Sensing, 41(2): 230-242.   DOI   ScienceOn
19 Lee. H., and H. Han, 2008. Evaluation of SSM/I and AMSR-E sea ice concentrations in the Antarctic spring using KOMPSAT-1 EOC imagery, IEEE Transactions on Geoscience and Remote Sensing, 46(7): 1905-1912.   DOI
20 Luckman, A., L. Padman, and D. Jansen, 2009. Persistent iceberg groundings in the western Weddell Sea, Antarctica, Remote Sensing of Environment, 114(2): 385-391.   DOI
21 Magagi, R., and M. Bernier, 2003. Optimal condition for wet snow detection using RADARSAT SAR data, Remote Sensing of Environment, 84(2): 221-233.   DOI   ScienceOn
22 Cavalieri, D.J., P. Gloersen, C.L. Parkinson, J.C. Comiso, and H.J. Zwally, 1997. Observed hemispheric asymmetry in global sea ice changes, Science, 278(5340): 1104-1106.   DOI
23 한향선, 이훈열, 2007. 북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교연구, 대한원격탐사학회지, 23(6): 507-520.   DOI
24 Andersen, S., L. Kaleschke, G. Heygster, and L.T. Pedersen, 2007. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice, Journal of Geophysical Research, 112, C08004, doi:10.1029/2006JC003543.   DOI