• 제목/요약/키워드: Ginsenosides Rb_1,\

검색결과 358건 처리시간 0.03초

Rhizopus sp.가 생산하는 효소에 의한 인삼 Saponin의 전환 (제1보) Ginsenoside-Rb$_1$에서 Ginsenoside-Rd로의 전환확인 (Conversion of Ginseng Saponin with the Enzyme Produced by Rhizopus sp. (Part 1) Confirmation of Conversion of Ginsenoside- Rb$_1$to Ginsenoside-Rd)

  • 김상달;서정훈
    • 한국미생물·생명공학회지
    • /
    • 제10권4호
    • /
    • pp.267-273
    • /
    • 1982
  • 미생물성 효소를 이용하여 인삼saponin중 조성비율이 가장 큰 ginsenoside-Rb$_1$을 약효면에서 보다 우수한 ginsenoside-Rd로 전환하고자 인삼부패균 중 Rhizopus 속의 한 균주를 선정하여 이 균주에서 얻은 효소를 ammonium sulfate 분별 침전법으로 조정제하여 사용하였다. 기질로 사용하기 위해 홍미삼 extract로부터 ginsenoside-Rb$_1$이 36.4%, ginsenoside-Rd 가 12.2%의 조성비율을 갖인 total saponin을 정제하였고 이어 ginsenoside-Rb$_1$의 함량을 증가시키기 위해 더욱 정제한 결과 ginsenoside-Rb$_1$이 54. 5%, ginsenoside-Rd가 1.1%인 ginsenoside Rb group saponin을 얻었다. 이들 기질 saponin에 본 효소를 작용시켜 본 결과 두 기질 모두 다른 ginsenoside pattern에는 변화없이 ginsenoside-Rb$_1$만이 선택적으로 감소하고 반면에 ginsenoside-Rd의 함량이 비례적으로 증가됨을 TLC 및 HPLC의 방법으로 조사하였으며 이로써 효소에 의한 인삼saponin의 선택적전환 가능성을 확인하였다.

  • PDF

Optimization of ginseng hairy roots culture and its ginsenoside analysis

  • Ji, Joong Gu;Yoo, Sun Kyun
    • 한국응용과학기술학회지
    • /
    • 제35권4호
    • /
    • pp.995-1002
    • /
    • 2018
  • Hairy root culture of ginseng is industrially prospected because the cultivation period of ginseng is relatively long. In this study, the effect of medium concentration and sucrose concentration on hairy root culture of ginseng was evaluated. The optimization of ginseng hairy roots transformed by Agrobacterium rhizogene were performed liquid medium. The MS(Murashinge & Skoog basal medium) concentration was selected with 1/2 strength MS and the optimal sucrose concentration was determined at 2-3%(w/v). At the optimum culture condition, The yield (the ratio of weight of grown hairy root cultures to weight of fresh ginseng hairy roots) and production rate of ginseng root were 19.42 times and 5.73 g/l-day. The major ginsenosides were Rb group, Re and Rg1. The produced total ginsenoside content in the solid medium was 9.87 (mg/g) and increased 1.34 times in the liquid medium (13.23 mg/g). In solid culture, the contents of ginsenosides Rb, Re and Rg1 were 2.14, 3.65 and 1.87 mg/g, respectively. In liquid culture, the contents of ginsenosides Rb, Re and Rg1 were 3.54, 4.12 and 2.63 mg/g, respectively.

Variations in Ginsenosides of Raw Ginseng According to Heating Temperature and Time

  • Kim, Chan Joong;Kim, Bo Mi;Kim, Cheon Suk;Baek, Jung Yeon;Jung, In Chan
    • 대한약침학회지
    • /
    • 제23권2호
    • /
    • pp.79-87
    • /
    • 2020
  • Objectives: Ginsenosides found in ginseng, and the hydrolysates derived from their conversion, exhibit diverse pharmacological characteristics [1]. These have been shown to include anti-cancer, anti-angiogenic, and anti-metastatic effects, as well as being able to provide hepatic and neuroprotective effects, immunomodulation, vasodilation, promotion of insulin secretion, and antioxidant activity. Therefore, the purpose of this study was to examine how quickly the ginsenosides decompose and what kinds of degradation products are created under physicochemical processing conditions that don't involve toxic chemicals or other treatments that may be harmful. Methods: The formation of ginsenoside-Rg2 and ginsenoside-Rg3 was examined. These demonstrated diverse pharmacological effects. Results: We also investigated physicochemical factors affecting their conversion. The heating temperatures and times yielding the highest concentration of ginsenosides (-Rb1, -Rb2, -Rc, -Rd, -Rf, -Rg1, and -Re) were examined. Additionally, the heating temperatures and rates of conversion of these ginsenosides into new 'ginseng saponins', were examined. Conclusion: In conclusion, obtained provide us with effective technology to control the concentration of both ginsenosides and the downstream converted saponins (ginsenoside-Rg2, Rg3, Rg5, and Rk1 etc.), as well as identifying the processing conditions which enable an enrichment in concentration of these compounds.

Effects of processing method on the pharmacokinetics and tissue distribution of orally administered ginseng

  • Chen, Jianbo;Li, Meijia;Chen, Lixue;Wang, Yufang;Li, Shanshan;Zhang, Yuwei;Zhang, Lei;Song, Mingjie;Liu, Chang;Hua, Mei;Sun, Yinshi
    • Journal of Ginseng Research
    • /
    • 제42권1호
    • /
    • pp.27-34
    • /
    • 2018
  • Background: The use of different methods for the processing of ginseng can result in alterations in its medicinal properties and efficacy. White ginseng (WG), frozen ginseng (FG), and red ginseng (RG) are produced using different methods. WG, FG, and RG possess different pharmacological properties. Methods: WG, FG, and RG extracts and pure ginsenosides were administered to rats to study the pharmacokinetics and tissue distribution characteristics of the following ginsenosides-DRg1, Re, Rb1, and Rd. The concentrations of the ginsenosides in the plasma and tissues were determined using UPLC-MS/MS. Results: The rate and extent of absorption of Rg1, Re, Rb1, and Rd appeared to be affected by the different methods used in processing the ginseng samples. The areas under the plasma drug concentration-time curves (AUCs) of Rg1, Re, Rb1, and Rd were significantly higher than those of the pure ginsenosides. In addition, the AUCs of Rg1, Re, Rb1, and Rd were different for WG, FG, and RG. The amounts of Rg1, Re, Rd, and Rb1 were significantly (p < 0.05) higher in the tissues than those of the pure ginsenosides. The amounts of Re, Rb1, and Rd from the RG extract were significantly higher than those from the WG and FG extracts in the heart, lungs, and kidneys of the rats. Conclusion: Our results show that the use of different methods to process ginseng might affect the pharmacokinetics and oral bioavailability of ginseng as well as the tissue concentrations of Rg1, Re, Rd, and Rb1.

증숙 처리에 의한 산삼 부정 배양근의 저분자 진세노사이드 추출 (Extraction of Low Molecular Weight Ginsenosides from Adventitious Roots Culture of Wild Mountain Ginseng by Steam Processing)

  • 이예지;김희규;고은지;최재후;조아름;김철중;이재근;임정대;최선강;유창연
    • 한국약용작물학회지
    • /
    • 제26권2호
    • /
    • pp.148-156
    • /
    • 2018
  • Background: Hot steaming is known to be effective in improving the biological activities of plant extracts by breaking down useful compounds to low molecular weight ones. Methods and Results: This study aimed to develop an optimal extraction and steam processing method for enhancing the low molecular ginsenoside contents of the adventitious roots culture of wild mountain ginseng. The total ginsenoside was optimally extracted when 70% EtOH was used at $50^{\circ}C$, whereas low molecule ginsenoside such as Rg2, Rh1, Rh4 and Rk1 could be extracted using 70% EtOH at $70^{\circ}C$. The adventitious roots culture of wild mountain ginseng is known to contain four major ginsenosides, i.e., Rb2, Rb1, Rg1 and Rd, however new ginsenosides Rg6, Rh4, Rg3, Rk1 and Rg5 were new abundantly obtaind after steam processing method was applied. The contents of total ginsenosides were the highest when thermal steam processing was conducted at $120^{\circ}C$ for 120 min. Unlike ginsenosides such as Rg1, Re, Rb1, Rc, Rb2, and Rh1, which decreased after steam processing, Rg3, Rk1, and Rg5 increased after thermal processing. Steam processing significanltly reduced the content of Rb1, increased that of Rg6 by about ten times than that in the adventitious roots culture of wild mountain ginseng. Conclusions: Our study showed that the optimal extraction and steam processing method increased the content of total ginsenosides and allowed the extraction of minor ginsenosides from major ones.

Characteristics of Absorption and Accumulation of Inorganic Germanium in Panax ginseng C. A. Meyer

  • Kang, Je-Yong;Park, Chan-Soo;Ko, Sung-Ryong;In, Kyo;Park, Chol-Soo;Lee, Dong-Yun;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제35권1호
    • /
    • pp.12-20
    • /
    • 2011
  • The characteristics of absorption and accumulation of inorganic germanium in Panax ginseng C. A. Meyer were examined. In 4-year-old P. ginseng, the germanium content of the field soil increased with increased amounts and frequencies of inorganic germanium application, while chemical components of the soil, such as available phosphate and exchangeable calcium, potassium, and magnesium, decreased with the increased inorganic germanium application. In the 4-year-old P. ginseng, the germanium content was highest in the rhizome and increased in the order of stem, leaf, lateral root, and main root, suggesting that inorganic germanium was absorbed from the root and translocated to the stem and leaf via the rhizome. As for changes in ginsenosides in 4-year-old P. ginseng rhizomes, the contents of ginsenosides $Rb_1$, $Rb_2$, Re, and Rf decreased as the germanium content in soil increased. Ginsenosides $Rb_1$, $Rb_2$, Rc, Re, and Rf in the main root also decreased with increasing germanium content in the main root. The results suggest that inorganic germanium treatment may increase organic germanium in harvested P. ginseng, thus enhancing the medicinal effi cacy of ginseng products.

인삼사포닌 화합물의 신속한 추출 (An Rapid Extraction of Ginseng Saponin Compounds)

  • 곽이성;김미주;김은희;김영애
    • 한국식품과학회지
    • /
    • 제29권6호
    • /
    • pp.1327-1329
    • /
    • 1997
  • 인삼으로부터 사포닌 화합물의 신속한 추출방법을 모색하기 위하여 waring blonder 와 유기용매를 이용한 새로운 추출방법을 개발하였다. 본 방법은 기존의 인삼 증류추출방법과 비교해볼 때 6개의 주종 사포닌($ginsenoside-Rb_2$, $ginsenoside-Rb_1$, ginsenoside-Rc, ginsenoside-Rd, ginsenoside-Re, $ginsenoside-Rg_1$) 함량이 유사하여 유의성이 있는 것으로 생각된다. 유기용매는 메탄올과 클로로포름을 7:3의 비율로 사용하였을 때 사포닌 화합물이 잘 추출되었다. 5개의 주종사포닌을 합한 전체 사포닌 함량은 본 방법에서는 2.41% 이었고 기존의 방법 에서는 2.54%이었다. 그러나 조사포닌의 함량은 본 방법이 기존의 방법보다 높은 것으로 나타났다.

  • PDF

Simultaneous determination of 30 ginsenosides in Panax ginseng preparations using ultra performance liquid chromatography

  • Park, Hee-Won;In, Gyo;Han, Sung-Tai;Lee, Myoung-Woo;Kim, So-Young;Kim, Kyung-Tack;Cho, Byung-Goo;Han, Gyeong-Ho;Chang, Il-Moo
    • Journal of Ginseng Research
    • /
    • 제37권4호
    • /
    • pp.457-467
    • /
    • 2013
  • A quick and simple method for simultaneous determination of the 30 ginsenosides (ginsenoside Ro, Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, 20(S)-Rh1, 20(S)-Rh2, 20(R)-Rh2, F1, F2, F4, Ra1, Rg6, Rh4, Rk3, Rg5, Rk1, Rb3, Rk2, Rh3, compound Y, compound K, and notoginsenoside R1) in Panax ginseng preparations was developed and validated by an ultra performance liquid chromatography photo diode array detector. The separation of the 30 ginsenosides was efficiently undertaken on the Acquity BEH C-18 column with gradient elution with phosphoric acids. Especially the chromatogram of the ginsenoside Ro was dramatically enhanced by adding phosphoric acid. Under optimized conditions, the detection limits were 0.4 to 1.7 mg/L and the calibration curves of the peak areas for the 30 ginsenosides were linear over three orders of magnitude with a correlation coefficients greater than 0.999. The accuracy of the method was tested by a recovery measurement of the spiked samples which yielded good results of 89% to 118%. From these overall results, the proposed method may be helpful in the development and quality of P. ginseng preparations because of its wide range of applications due to the simultaneous analysis of many kinds of ginsenosides.

Gypenoside V로부터 minor ginsenosides의 생산 (Production of Minor Gisenosides from Gypenoside V)

  • 손나리;민진우;장미;김효연;전지나;양덕춘
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.20-20
    • /
    • 2010
  • Panax ginseng C.A Meyer is frequently taken orally as a traditional herbal medicine in Asian countries. The major components of ginseng are ginsenoside, which are pharmaceutical activity. The six major ginsenosides, including Rb1, Rb2, Rc, Rd, Re and Rg1 account for 90% of total ginsenosides. Even though the minor ginsenosides, including Rg3, Rh2 and compound K has high pharmacetical activities, the price of minor ginsenosides is too high. Therefore we isolated the gypenoside V and made it converted to minor ginsenosides. In the plant Gynostemma pentaphyllum Makino, gypenosdie V was presented as dominant saponin (content about 2.4%), and was similar to protopanaxadol type ginsenosides such as ginsenoside Rb1. In this study, we confirmed that the coversion of gypenoside V to minor ginsenosides after using the various treatment such as heating, acid treatment, commercial edible enzyme, and lactobacillus. Consequently, we optimizied the transformation of gypenoside V to minor ginsenoside using Thin Layer Chromatography (TLC), High Performance Liquid Chromatography (HPLC), Time-of-flight Mass Spectrometry (LC/TOF/MS).

  • PDF

The Chemical and 1,1-Diphenyl-2-Picrylhydrazyl Radical Scavenging Activity Changes of Ginsenosides Rb1 and Rg1 by Maillard Reaction

  • Yamabe, Noriko;Lee, Jin-Gyun;Lee, Yong-Jae;Park, Chan-Hum;Kim, Hyun-Young;Park, Jeong-Hill;Yokozawa, Takako;Kang, Ki-Sung
    • Journal of Ginseng Research
    • /
    • 제35권1호
    • /
    • pp.60-68
    • /
    • 2011
  • The chemical and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity changes of ginsenoside $Rb_1$-glycine and ginsenoside $Rg_1$-glycine mixtures by Maillard reaction were investigated to identify the role of Maillard reaction in the increased antioxidant activity of ginseng by heat-processing. The DPPH radical scavenging activity of $Rg_1$-glycine mixture was more strongly increased by heat-processing than that of $Rb_1$-glycine mixture. From the analyses of ginsenosides, $Rb_1$ was gradually changed into 20(S)-$Rg_3$, 20(R)-$Rg_3$, $Rk_1$ and $Rg_5$ by heat-processing. $Rg_1$ was gradually changed into 20(S)-$Rh_1$, 20(R)-$Rh_1$, $Rk_3$ and $Rh_4$ by heat-processing. However, the generation of these less-polar ginsenosides was not related to the increased DPPH radical scavenging activity of $Rb_1$-glycine and $Rg_1$-glycine mixtures because their DPPH radical scavenging activities were already significantly increased when dried at $50^{\circ}C$, which temperature induce no structural changes of ginsenosides. In the comparison of browning compound levels of $Rg_1$-glycine and $Rb_1$-glycine mixtures, the extents of Maillard reaction were positively correlated with their increased free radical scavenging activities. Based on the chemical and DPPH radical scavenging activity changes of $Rg_1$-glycine and $Rb_1$-glycine mixtures by heat-processing, we clearly identified that the increased free radical scavenging activity of ginsenoside is mediated by the Maillard reaction between sugar moiety of ginsenoside and amino acid.