• Title/Summary/Keyword: Ginsenoside Ro

Search Result 35, Processing Time 0.022 seconds

Vasodilator-stimulated phosphoprotein-phosphorylation by ginsenoside Ro inhibits fibrinogen binding to αIIb/β3 in thrombin-induced human platelets

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.359-365
    • /
    • 2016
  • Background: Glycoprotein IIb/IIIa (${\alpha}aIIb/{\beta}_3$) is involved in platelet adhesion, and triggers a series of intracellular signaling cascades, leading to platelet shape change, granule secretion, and clot retraction. In this study, we evaluated the effect of ginsenoside Ro (G-Ro) on the binding of fibrinogen to ${\alpha}aIIb/{\beta}_3$. Methods: We investigated the effect of G-Ro on regulation of signaling molecules affecting the binding of fibrinogen to ${\alpha}aIIb/{\beta}_3$, and its final reaction, clot retraction. Results: We found that G-Ro dose-dependently inhibited thrombin-induced platelet aggregation and attenuated the binding of fibrinogen to ${\alpha}aIIb/{\beta}_3$ by phosphorylating cyclic adenosine monophosphate (cAMP)-dependently vasodilator-stimulated phosphoprotein (VASP; $Ser^{157}$). In addition, G-Ro strongly abrogated the clot retraction reflecting the intensification of thrombus. Conclusion: We demonstrate that G-Ro is a beneficial novel compound inhibiting ${\alpha}aIIb/{\beta}_3$-mediated fibrinogen binding, and may prevent platelet aggregation-mediated thrombotic disease.

Inhibitory effects of thromboxane A2 generation by ginsenoside Ro due to attenuation of cytosolic phospholipase A2 phosphorylation and arachidonic acid release

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.236-241
    • /
    • 2019
  • Background: Thromboxane A2 ($TXA_2$) induces platelet aggregation and promotes thrombus formation. Although ginsenoside Ro (G-Ro) from Panax ginseng is known to exhibit a $Ca^{2+}-antagonistic$ antiplatelet effect, whether it inhibits $Ca^{2+}-dependent$ cytosolic phospholipase $A_2$ ($cPLA_{2{\alpha}}$) activity to prevent the release of arachidonic acid (AA), a $TXA_2$ precursor, is unknown. In this study, we attempted to identify the mechanism underlying G-Ro-mediated $TXA_2$ inhibition. Methods: We investigated whether G-Ro attenuates $TXA_2$ production and its associated molecules, such as cyclooxygenase-1 (COX-1), $TXA_2$ synthase (TXAS), $cPLA_{2{\alpha}}$, mitogen-activated protein kinases, and AA. To assay COX-1 and TXAS, we used microsomal fraction of platelets. Results: G-Ro reduced $TXA_2$ production by inhibiting AA release. It acted by decreasing the phosphorylation of $cPLA_{2{\alpha}}$, p38-mitogen-activated protein kinase, and c-Jun N-terminal kinase1, rather than by inhibiting COX-1 and TXAS in thrombin-activated human platelets. Conclusion: G-Ro inhibits AA release to attenuate $TXA_2$ production, which may counteract $TXA_2-associated$ thrombosis.

Ginsenosides from the Roots of Korean Cultivated-Wild Ginseng

  • Yang, Min-Cheol;Seo, Dong-Sang;Hong, Jong-Ki;Hong, Sung-Hyun;Kim, Young-Choong;Lee, Kang-Ro
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.171-176
    • /
    • 2008
  • Column chromatographic separation of 70% EtOH extract of the roots of Korean cultivated-wild ginseng led to the isolation of ten ginsenosides (1 - 10). The isolated compounds were identified as ginsenoside $Rg_1$ (1), ginsenoside Re (2), ginsenoside Rc (3), ginsenoside $Rb_1$ (4), ginsenoside $Rb_2$ (5), ginsenoside Rd (6), ginsenoside $Rg_3$ (7), ginsenoside $F_2$ (8), ginsenoside $Rb_3$ (9), and ginsenoside $Rd_2$ (10) by physicochemical and spectroscopic methods. The compounds (1 - 10) were for the first time isolated from the roots of Korean cultivated-wild ginseng.

Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells

  • Kim, Sokho;Oh, Myung-Hoon;Kim, Bum-Seok;Kim, Won-Il;Cho, Ho-Seong;Park, Byoung-Yong;Park, Chul;Shin, Gee-Wook;Kwon, Jungkee
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.365-370
    • /
    • 2015
  • Background: The beneficial effects of ginsenoside species have been well demonstrated in a number of studies. However, the function of ginsenoside Ro (GRo), an oleanane-type saponin, has not been sufficiently investigated. Thus, the aim of the present study was to investigate the anti-inflammatory effects of GRo in vitro using the Raw 264.7 mouse macrophage cell line treated with lipopolysaccharide (LPS), and to clarify the possible mechanism of GRo involving heme oxygenase-1 (HO-1), which itself plays a critical role in self-defense in the presence of inflammatory stress. Methods: Raw 264.7 cells were pretreated with GRo (up to $200{\mu}M$) for 1 h before treatment with 1 mg/mL LPS, and both cell viability and inflammatory markers involving HO-1 were evaluated. Results: GRo significantly increased cell viability in a dose dependent manner following treatment with LPS, and decreased levels of reactive oxygen species and nitric oxide. GRo decreased inflammatory cytokines such as nitric oxide synthase and cyclooxygenase-2 induced by LPS. Moreover, GRo increased the expression of HO-1 in a dose dependent manner. Cotreatment of GRo with tin protoporphyrin IX, a selective inhibitor of HO-1, not only inhibited upregulation of HO-1 induced by GRo, but also reversed the anti-inflammatory effect of GRo in LPS treated Raw 264.7 cells. Conclusion: GRo induces anti-inflammatory effects following treatment with LPS via upregulation of HO-1.

Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice

  • Yoo, Yung Choon;Lee, Junglim;Park, Seok Rae;Nam, Ki Yeul;Cho, Young Ho;Choi, Jae Eul
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.80-86
    • /
    • 2013
  • Korean red ginseng has been shown to possess a variety of biological activities. However, little is known about antiviral activity of ginsenosides of Korean red ginseng. Here, we investigated the protective effect by oral administration of various ginsenosides on the lethal infection of haemagglutinating virus of Japan (HVJ) in mice. In a lethal infection model in which almost all mice infected with HVJ died within 15 days, the mice were administered orally (per os) with 1 mg/mouse of dammarane-type (ginsenoside-Rb1, -Rb2, -Rd, -Re, and -Rg2) or oleanolic acid-type (ginsenoside-Ro) ginsenosides 3, 2, and 1 d before virus infection. Ginsenoside-Rb2 showed the highest protective activity, although other dammarane-type and oleanolic acid-type ginsenosides also induced a significant protection against HVJ. However, neither the consecutive administration with a lower dosage (300 ${\mu}g$/mouse) nor the single administration of ginsenoside-Rb2 (1 mg/mouse) was active. In comparison of the protective activity between ginsenoside-Rb2 and its two hydrolytic products [20(S)- and 20(R)-ginsenoside-Rg3], 20(S)-ginsenoside-Rg3, but not 20(R)-ginsenoside-Rg3, elicited a partial protection against HVJ. The protective effect of ginsenoside-Rb2 and 20(S)-ginsenoside-Rg3 on HVJ infection was confirmed by the reduction of virus titers in the lungs of HVJ-infected mice. These results suggest that ginsenoside-Rb2 is the most effective among ginsenosides from red ginseng to prevent the lethal infection of HVJ, so that this ginsenoside is a promising candidate as a mucosal immunoadjuvant to enhance antiviral activity.

Study on biosynthesis of ginsenosides in the leaf of Panax ginseng by seasonal flux analysis

  • Kim, Dongmin;Han, Jaehong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.315-322
    • /
    • 2019
  • Seasonal ginsenoside flux in the leaves of 5-year-old Panax ginseng was analyzed from the field-grown ginseng, for the first time, to study possible biosynthesis and translocation of ginsenosides. The concentrations of nine major ginsenosides, Rg1, Re, Rh1, Rg2, R-Rh1, Rb1, Rc, Rb2, and Rd, were determined by UHPLC during the growth in between April and November. It was confirmed total ginsenoside content in the dried ginseng leaves was much higher than the roots by several folds whereas the composition of ginsenosides was different from the roots. The ginsenoside flux was affected by ginseng growth. It quickly increased to 10.99±0.15 (dry wt%) in April and dropped to 6.41±0.14% in May. Then, it slowly increased to 9.71±0.14% in August and maintained until October. Ginsenoside Re was most abundant in the leaf of P. ginseng, followed by Rd and Rg1. Ginsenosides Rf and Ro were not detected from the leaf. When compared to the previously reported root data, ginsenosides in the leaf appeared to be translocated to the root, especially in the early vegetative stage even though the metabolite translocated cannot be specified. The flux of ginsenoside R-Rh1 was similar to the other (20S)-PPT ginsenosides. When the compositional changes of each ginsenoside in the leaf was analyzed, complementary relationship was observed from ginsenoside Rg1 and Re, as well as from ginsenoside Rd and Rb1+Rc. Accordingly, ginsenoside Re in the leaf was proposed to be synthesized from ginsenoside Rg1. Similarly, ginsenosides Rb1 and Rc were proposed to be synthesized from Rd.

Pharmacological Effects of ginseng Saponins on Receptor Stimulation-responses

  • Eiichi Tachikawa;Kenzo Kudo;Kazuho Harada;Takeshi Kashimoto;KatsuroFurumachi;Yoshikazu Miyate;Atsushi Kakizaki;Eiji Takahashi
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.40-46
    • /
    • 1998
  • We investigated the influence of the root of Panax ginseng C. A. Meyer on the secretion of catecholamines from bovine adrenal chromaffin cells, which are used as a model of nervous systems. In two major parts extracted from the ginseng root, the crude saponin fraction, but not the non-saponin fraction, reduced the secretion from the cells, stimulated by acetylcholine (ACh). Ginseng saponins (ginsenosides) are classified into three groups, the panaxadiol, the panaxatriol and the oleanolic acid groups, on the basis of the chemical structures of their saponins. Both the panaxadiol and the panaxatriol saponins, excluding only one oleanolic acid saponin ginsenoside-Ro, generally reduced the ACh-evoked secretion. The inhibitory effects of the panaxatriol were much stronger than those of the panaxadiol. However, ginsenoside-Rg, and -Rh3 in the panaxadiol saponins were the potent inhibitors comparable to the panaxatriol saponins. Ginsenoside-Rg2 in the panaxatriol was the most effective. It is probable that the ginsenoside inhibition of the catecholamine secretion is due to the suppression of the function of the nicotinic ACh receptor-cation channels. On the other hand, ginsenoside-Rg2 did not affect the angiotensin II-, the bradykinin-, the histamine- and the neurotensin- induced catecholamine secretions from the chromaffin cells and the muscarine- and the histamine- induced contraction of the ileum in guinea-pigs. Ginsenoside-Rbl, a panaxadiol saponin, and ginsenoside-Ro had no or only a slight effect on them. On the contrary, ginsenoside-Rg3 not only competitively inhibited the muscarine-induced ileum contraction but also reduced the angiotensin R -, the bradykinin-, the histamine- and the neurotensin-induced catecholamine secretions. Thus, the ginseng root contains active ingredients, namely some ginsensides, which suppress the responses induced by receptor stimulation. The inhibitory effects of ginseng saponins may be one of the action mechanisms for the pharmacological effects of the Panax ginseng root.

  • PDF

Ginsenoside Rb2 Upregulates the Low Density Lipoprotein Receptor Gene Expression through the Activation of the Sterol Regulated Element Binding Protein Maturation in HepG2 Cells

  • Lim, Grewo;Lee, Hyunil;Kim, Eun-Ju;Noh, Yun-Hee;Ro, Youngtae;Koo, Ja-Hyun
    • Journal of Ginseng Research
    • /
    • v.29 no.4
    • /
    • pp.159-166
    • /
    • 2005
  • Ginsenosides, a group of Panax ginseng saponins, exert the lowering effects of plasma cholesterol levels in animals. We had reported earlier that ginsenoside Rb2 upregulate low-density lipoprotein receptor (LDLR) expression via a mechanism that is dependent of the activation of sterol response element binding protein 2 (SREBP-2) expression. This study was conducted to determine the effects of ginsenoside Rb2 on the expression of the hepatic LDLR expression at cellular levels using HepG2 cells, and to evaluate whether the sterol response element binding protein 1 (SREBP-l) was involved in the regulation of LDLR expression. Incubation of HepG2 cells in serum-free medium supplemented with cholesterol $(10{\mu}g/ml)$ for 8 hours decreased the mRNAs of LDLR mRNA by $12\%$ and SREBP-l mRNA by $35\%$. Ginsenoside Rb2 antagonized the repressive effects of cholesterol and increased both LDLR and SREBP-l mRNA expression to 1.5- and 2-fold, respectively. Furthermore, Western blot and confocal microscopic analyses with SREBP-l polyclonal antibody revealed that ginsenoside Rb2 enhanced the maturation of the SREBP-1 from the inactive precursor form in ER membrane to the active transcription factor form in nucleus. These results suggest that ginsenoside Rb2 upregulates LDLR expression via a mechanism that is dependent of the activation of not only SREBP-2 expression, but also SREBP-1 expression and maturation, and also indicate that the pharmacological value of ginsenoside Rb2 may be distinguished from that of lovastatin which is reported that it upregulate LDLR through SREBP-2 only, not through SREBP-1.

Influences of Fusurium sozani and Phytophthoya cactorum on the Changes in Saponin Components of Korean Ginseng (Panax ginseng C.A. Meyer) (Fusarium solani와 Phytophlhora cactorum이 고려인삼의 사포닌 성분변화에 미치는 영향)

  • 조대휘;오승환
    • Journal of Ginseng Research
    • /
    • v.10 no.1
    • /
    • pp.66-75
    • /
    • 1986
  • Influnces of Fuiarium solani and Phytophthora cactorum infection on the changes in saponin components of Korean ginseng (Panax ginseng C.A. Meyer)roots and some of the biology of those fungi in relation to ginseng root were investigated. Mycelial growth of F. solani was decreased as increasing concentration of the water extracts of fresh ginseng roots, while that of P. cactorum was increased as increasing the concentration of the water extracts and crude saponin. Mycelial growth of F. solani, however, was increased as increasing concentration of crude ginseng saponin upto 20 ppm, while it was tended to be decreased when the concentration was higher than 50 ppm. Nystatin also suppresed the growth of F. solani as increasing its concentration, but it did not affected on the growth of p. cactorum. Ginsenoside Ra and Ro components were not detected in ginseng roots inoculated with F. solani or P. cactorum. Panaxadiol gisenosides were increased by 3.0%, whereas panaxatriol ginsenosides were decreased by 34.9% in ginseng roots inoculated with F. iolani. In ginseng roots inoculated with P. cactorum panaxadiol ginsenosides were increased by 21.1%, but panaxatriol ginsenosides were decreased by 23.5%. PD/PT ratio in ginseng roots inoculated with F. solani or P. cactorum were equally increased by 58.4% in spite of differences in the change of panaxadiol and panaxatriol ginsenosides. The total saponin components of ginseng roots inoculated with F. solani or P. cactorum were decreased by 17.8% and 2.5%, respectively.

  • PDF

The Mechanism of LDL Receptor Up-regulation by Ginsenoside-Rb2 in HepG2 Cultured under Enriched Cholesterol Condition (고콜레스테롤 조건하에 배양된 HepG2에서의 ginsenoside-Rb2에 의한 LDL receptor 억제 완화 기전)

  • Lim, G-Rewo;Lee, Hyun-Il;Kim, Eun-Ju;Ro, Young-Tae;Noh, Yun-Hee;Koo, Ja-Hyun
    • Journal of Ginseng Research
    • /
    • v.28 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • The effect of ginsenoside-Rb2, one of a major pharmacological component of Panax ginseng C.A. Meyer, on low density lipoprotein (LDL) receptor expression was investigated and compared with hypocholesterolemic drug lovastatin. In HepG2 cell, exogenous cholesterol decreased LDL receptor mRNA expression, but ginsenoside-Rb2 recovered this reduction of LDL receptor mRNA up to normal expression level. Lovastatin also increased LDL receptor mRNA expression as similar as ginsenoside-Rb2 did. The reduction of sterol regulatory element binding protein (SREBP) transcription by exogenous cholesterol was also similarly recovered by ginsenoside-Rb2 and lovastatin addition. Compound K, a metabolite of ginsenoside-Rb2 and -Rb1 by human intestinal bacteria also increased the SREBP mRNA expression in cholesterol-enriched condition. Ginsenoside-Rb2 seems to up-regulate LDL receptor mRNA expression through the induction of de novo SREBP transcription. Therefore, increased expression of SREBP mRNA by ginsenoside-Rb2 elevated the LDL receptor mRNA expression in HepG2 cells, and these inductions possibly drop the plasma cholesterol level in hypercholesterolemia patients, in vivo, as likely in case of lovastatin.