• Title/Summary/Keyword: Ginsenoside Rg4

Search Result 337, Processing Time 0.026 seconds

Metabolism of Ginsenoside Rg5, a Main Constituent Isolated from Red Ginseng, by Human Intestinal Microflora and Their Antiallergic Effect

  • Shin, Yong-Wook;Bae, Eun-Ah;Han, Myung-Joo;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1791-1798
    • /
    • 2006
  • When ginsenoside Rg5, a main component isolated from red ginseng, was incubated with three human fecal microflora for 24 h, all specimens showed hydrolyzing activity: all specimens produced ginsenoside Rh3 as a main metabolite, but a minor metabolite $3{\beta},12{\beta}$-dihydroxydammar-21(22),24-diene (DD) was observed in two specimens. To evaluate the antiallergic effect of ginsenoside Rg5 and its metabolites, the inhibitory effect of ginsenoside Rg5 and its metabolite ginsenoside Rh3 against RBL-2H3 cell degranulation, mouse passive cutaneous anaphylaxis (PCA) reaction induced by the IgE-antigen complex, and mouse ear skin dermatitis induced by 12-O-tetradecanoilphorbol-13-acetate (TPA) were measured. Ginsenosides Rg5 and Rh3 potently inhibited degranulation of RBL-2H3 cells. These ginsenosides also inhibited mRNA expression of proinflammatory cytokines IL-6 and $TNF-{\alpha}$ in RBL-2H3 cells stimulated by IgE-antigen. Orally and intraperitoneally administered ginsenoside Rg3 and orally administered ginsenoside Rg5 to mice potently inhibited the PCA reaction induced by IgE-antigen complex. However, intraperitoneally administered ginsenoside Rg5 nearly did not inhibit the PCA reaction. These ginsenosides not only suppressed the swelling of mouse ears induced by TPA, but also inhibited mRNA expression of cyclooxygenase-2, $TNF-{\alpha}$, and IL-4 and activation of transcription factor NF-kB. These inhibitions of ginsenoside Rh3 were more potent than those of ginsenoside Rg5. These findings suggest that ginsenoside Rg5 may be metabolized in vivo to ginsenoside Rh3 by human intestinal microflora, and ginsenoside Rh3 may improve antiallergic diseases, such as rhinitis and dermatitis.

Optimization for Preparation of Malic acid-catalyzed Ginsenoside Rg3 by Response Surface Methodology (반응 표면 분석법을 이용한 홍삼 사포닌으로부터의 사과산 활용 진세노사이드 Rg3 전환 최적화)

  • Ki Seong Kim;Junseong Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.375-383
    • /
    • 2023
  • Malic acid-catalyzed transformation has been developed to produce ginsenoside Rg3 which is increasingly in demand as a functional ingredient. The optimization of the conversion of red ginseng saponin (RGS) to ginsenoside Rg3 by acid catalyzed transformation was carried out using Box-Behnken design (BBD) based on Response Surface Analysis (RSM). The main independent variables were malic acid concentration, temperature, and reaction time. Conversion of ginsenoside Rg3 was performed according to BBD model and optimization conditions were analyzed. The concentration of the converted ginsenoside Rg3 ranged from 1.548 mg/L to 4.558 mg/L, and the highest production was obtained under the condition of reacting 1% malic acid, 50 ℃ and 9h. Consequently, The independent variables affecting the production of ginsenoside Rg3 were identified in the following order: malic acid concentration, reaction time and temperature. In addition, it was confirmed that the interaction between malic acid concentration and reaction time had a greater influence than the temperature.

Change of Ginsenoside Composition in Ginseng Extract by Vinegar Process

  • Ko, Sung-Kwon;Lee, Kyung-Hee;Hong, Jun-Kee;Kang, Sung-An;Sohn, Uy-Dong;Im, Byung-Ok;Han, Sung-Tai;Yang, Byung-Wook;Chung, Sung-Hyun;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.509-513
    • /
    • 2005
  • The purpose of this study was to develop a new preparation process of ginseng extract using high concentrations of ginsenoside $Rg_3$, a special component in red ginseng. From when the ginseng saponin glycosides transformed into the prosapogenins chemically, they were analyzed using the HPLC method. The ginseng and ginseng extract were processed with several treatment conditions of an edible brewing vinegar. The results indicated that ginsenoside $Rg_3$ quantities increased over 4% at the pH 2-4 level of vinegar treatment. This occurred at temperatures above $R90^{\circ}C$, but not occurred at other pH and temperature condition. In addition, the ginseng and ginseng extract were processed with the twice-brewed vinegar (about 14% acidity). This produced about 1.5 times more ginsenoside $Rg_3$ than those processed with regular amounts of brewing vinegar (about 7% acidity) and persimmon vinegar (about 3% acidity). Though the white ginseng extract was processed with the brewing vinegar over four hr, there was no change for ginsenoside $Rg_3$. However, the VG8-7 was the highest amount of ginsenoside $Rg_3$ (4.71%) in the white ginseng extract, which was processed with the twice-brewed vinegar for nine hr. These results indicate that ginseng treated with vinegar had 10 times the quantity of ginsenoside $Rg_3$, compared to the amount of ginsenoside $Rg_3$ in the generally commercial red ginseng, while ginsenoside $Rg_3$ was not found in raw and white ginseng.

Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1

  • Vo, Hoang Tung;Cho, Jae Youl;Choi, Yong-Eui;Choi, Yong-Soon;Jeong, Yeon-Ho
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.304-313
    • /
    • 2015
  • Background: Ginsenoside Rg3 is a promising anticancer agent. It is usually produced by heat treatment of ginseng, in which ginsenoside Rb1 is the major ginsenoside. A kinetic study was conducted to optimize ginsenoside Rg3 production by the heat treatment of ginsenoside Rb1. Methods: Ginsenoside Rb1 was heated using an isothermal machine at $80^{\circ}C$ and $100^{\circ}C$ and analyzed using HPLC. The kinetic parameters were calculated from the experimental results. The activation energy was estimated and used to simulate the process. The optimized parameters of ginsenoside Rg3 production are suggested based on the simulation. Results: The rate constants were $0.013h^{-1}$ and $0.073h^{-1}$ for the degradation of ginsenosides Rb1 and Rg3 at $80^{\circ}C$, respectively. The corresponding rate constants at $100^{\circ}C$ were $0.045h^{-1}$ and $0.155h^{-1}$. The estimated activation energies of degradation of ginsenosides Rb1 and Rg3 were 69.2 kJ/mol and 40.9 kJ/mol, respectively. The rate constants at different temperatures were evaluated using the estimated activation energies, and the kinetic profiles of ginsenosides Rb1 and Rg3 at each temperature were simulated based on the proposed kinetic model of consecutive reaction. The optimum strategies for producing ginsenoside Rg3 from ginsenoside Rb1 are suggested based on the simulation. With increased temperature, a high concentration of ginsenoside Rg3 is formed rapidly. However, the concentration decreases quickly after the reaching the maximal concentration value. Conclusion: The optimum temperature for producing ginsenoside Rg3 should be the highest temperature technically feasible below $180^{\circ}C$, in consideration of the cooling time. The optimum reaction time for heat treatment is 30 min.

Increase of Functional Saponin by Acidic Treatemnt and Temperature of Red Ginseng Extract (홍삼엑기스의 산(pH) 및 온도처리에 의한 기능성 사포닌 함량증대)

  • In Jun-Gyo;Lee Bum-Soo;Kim Eun-Jeong;Park Myung-Han;Yang Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.139-143
    • /
    • 2006
  • To increase the contents of functional ginsenosides by conversion, especially ginsenoside-$Rg_3$ and $Rh_2$, the extracts of red ginseng were treated with high temperature and citric acid or apricot extract. When the extracts were subject to $120^{\circ}C$ for 2 hours, the content of ginsenoside-$Rg_3$ was increased 2 times than in control. When the extracts were subject to $120^{\circ}C$ and acidic conditions adjusted with citric acid, the ginsenoside-$Rg_3$, was detected 2.8 times, but other ginsenoside were decreased heavily to 65%. When the extract were treated with for 12 hours at $80^{\circ}C$, the content of ginsenoside-$Rg_3$ was increased to 3.3 times, Also, when the red ginseng extracts were treated with apricot extract, the ginsenoside-$Rg_3$ was detected to 4 times than in control, but other ginsenoside were decreased lightly to 35%, not same as at the $120^{\circ}C$ treatment.

Effects of Ginsenoside-$Rg_1$ on Post-thawed Miniature Pig Sperm Motility, Mitochondria Activity, and Membrane Integrity

  • Hwang, You Jin;Kim, Dae Young
    • Journal of Embryo Transfer
    • /
    • v.28 no.1
    • /
    • pp.63-71
    • /
    • 2013
  • In this study, we used flow a cytometric assay to evaluate plasma membrane integrity and mitochondrial activity in post-thawed sperm that was supplemented with ginsenoside-$Rg_1$. Varying concentrations of ginsenoside-$Rg_1$ (0, 25, 50 and $100{\mu}M/ml$) were used in the extender during cryopreservation to protect the DNA of thawed sperm, thereby increasing the viability and motility rate as evaluated using a computer-assisted sperm analysis (CASA) method. The results derived from CASA were used to compare the fresh, control, and ginsenoside-$Rg_1$ groups. Sperm motility and the number of progressively motile sperm were significantly (p<0.05) higher in the $50{\mu}M/ml$ ginsenoside-Rg1 group ($61.0{\pm}4.65%$) than in the control ($46.6{\pm}7.02%$), $25{\mu}M/ml$ ($46.2{\pm}4.76%$), and $100{\mu}M/ml$ ginsenoside-$Rg_1$ ($52.0{\pm}1.90%$) groups. However, the velocity distribution of post-thawed sperm did not differ significantly. Membrane integrity and MMP staining as revealed using flow cytometry were significantly (p<0.05) higher ($91.6{\pm}0.82%$) in the $50{\mu}M/ml$ ginsenoside-$Rg_1$ group than in the other groups. Here, we report that ginsenoside-$Rg_1$ affects the motility and viability of boar spermatozoa. Moreover, ginsenoside-$Rg_1$ can be used as a protective additive for the suppression of intracellular mitochondrial oxidative stress caused by cryopreservation.

Ginsenoside Rg1 Induces Autophagy in Colorectal Cancer through Inhibition of the Akt/mTOR/p70S6K Pathway

  • Ruiqi Liu;Bin Zhang;Shuting Zou;Li Cui;Lin, Lin;Lingchang Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.774-782
    • /
    • 2024
  • This study aimed to elucidate the anti-colon cancer mechanism of ginsenoside Rg1 in vitro and in vivo. Cell viability rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium assay. The inhibitory effect of ginsenoside Rg1 against CT26 cell proliferation gradually increased with increasing concentration. The in vivo experiments also demonstrated an antitumor effect. The monodansylcadaverine (MDC), transmission electron microscopy (TEM), and expression of autophagy marker proteins confirmed that ginsenoside Rg1 induced autophagy in vitro. Ginsenoside Rg1 induced autophagy death of CT26 cells, but this effect could be diminished by autophagy inhibitor (3-methyladenine, 3-MA). Additionally, in a xenograft model, immunohistochemical analysis of tumor tissues showed that the LC3 and Beclin-1 proteins were highly expressed in the tumors from the ginsenoside Rg1-treated nude mice, confirming that ginsenoside Rg1 also induced autophagy in vivo. Furthermoer, both in vivo and in vitro, the protein expressions of p-Akt, p-mTOR, and p-p70S6K were inhibited by ginsenoside Rg1, which was verified by Akt inhibitors. These results indicated that the mechanism of ginsenoside Rg1 against colon cancer was associated with autophagy through inhibition of the Akt/mTOR/p70S6K signaling pathway.

Three Hydroxylated Ginsenosides from Heat Treatmented Ginseng (인삼의 열처리 과정 중 생성되는 3종의 수산화진세노사이드에 대한 연구)

  • Lee, Sang Myung
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.255-263
    • /
    • 2020
  • Ginsenosides are considered to be the most important ingredients in ginseng. They are chemically converted by endogenous organic acids contained in ginseng and the heat applied during red ginseng processing. During this procedure, various converted ginsenosides are produced through hydrolysis of substitute sugars of ginsenosides and forming double bonds through dehydration in the dammarane skeleton. In order to study the conversion mechanism of protopanaxadiol-type ginsenosides during the heat treatment process of ginseng, we purified the three final converted ginsenosides by heating fresh ginseng for a long time. The three isolated ginsenosides were identified as 25(OH)-ginsenoside Rg5, 25(OH)-ginsenoside Rz1 and 25(OH)-ginsenoside Rg3 through NMR spectrum analysis. As a result of quantification of ginseng heated at 100 ℃ for 0 to 6 days by HPLC/UV and TLC methods, the content of 25(OH)-ginsenosides tended to increase in proportion to the time exposed to heat. In particular, the content of 25(OH)-ginsenosid Rg5 was confirmed to be noticeably increased.

The Change of Ginsenoside Composition in White Ginseng and Fine White Ginseng Extract by the Microwave and Vinegar Process (백삼 및 백미삼 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Jo, Hee Kyung;Im, Byung Ok;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.77-83
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of ginseng extracts having high concentrations of ginsenoside $Rg_3$, $Rg_5$ and $Rk_1$, a special component of Red ginseng. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of White ginseng (Panax ginseng) and Fine White ginseng were processed under several treatment conditions including microwave and vinegar (about 14% acidity) treatments. Results of those treatments showed that the quantity of ginsenoside $Rg_3$ increased by over 0.6% at 4 minutes of pH 2~4 vinegar and microwave treatments. The results of processing with MWG-4 indicate that the Microwave and vinegar processed white ginseng extracts (about 14% acidity) that had gone through 4-minute treatments were found to contain the largest amount of ginsenoside $Rg_3$ (0.626%), $Rg_5$ (0.514%) and $Rk_1$ (0.220%). Results of treatments with MFWG-5 showed that the Fine White ginseng extracts that had been processed with microwave and vinegar (about 14% acidity) for 5 minutes were found to contain the largest amount of ginsenoside $Rg_3$ (4.484%), $Rg_5$ (3.192%) and $Rk_1$ (1.684%). It is thought that such results provide basic information in preparing White ginseng and Fine White ginseng extracts with functionality enhanced.

Fermented red ginseng and ginsenoside Rd alleviate ovalbumin-induced allergic rhinitis in mice by suppressing IgE, interleukin-4, and interleukin-5 expression

  • Kim, Hye In;Kim, Jeon-Kyung;Kim, Jae-Young;Han, Myung Joo;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.635-644
    • /
    • 2019
  • Background: To increase the pharmacological effects of red ginseng (RG, the steamed root of Panax ginseng Meyer), RG products modified by heat process or fermentation have been developed. However, the antiallergic effects of RG and modified/fermented RG have not been simultaneously examined. Therefore, we examined the allergic rhinitis (AR)-inhibitory effects of water-extracted RG (wRG), 50% ethanol-extracted RG (eRG), and bifidobacteria-fermented eRG (fRG) in vivo. Methods: RBL-2H3 cells were stimulated with phorbol 12-myristate-13-acetate/A23187. Mice with AR were prepared by treatment with ovalbumin. Allergic markers IgE, tumor necrosis factor-${\alpha}$, interleukin (IL)-4, and IL-5 were assayed in the blood, bronchoalveolar lavage fluid, nasal mucosa, and colon using enzyme-linked immunosorbent assay. Mast cells, eosinophils, and Th2 cell populations were assayed using a flow cytometer. Results: RG products potently inhibited IL-4 expression in phorbol 12-myristate-13-acetate/A23187-stimulated RBL-2H3 cells. Of tested RG products, fRG most potently inhibited IL-4 expression. RG products also alleviated ovalbumin-induced AR in mice. Of these, fRG most potently reduced nasal allergy symptoms and blood IgE levels. fRG treatment also reduced IL-4 and IL-5 levels in bronchoalveolar lavage fluid, nasal mucosa, and reduced mast cells, eosinophils, and Th2 cell populations. Furthermore, treatment with fRG reduced IL-4, IL-5, and IL-13 levels in the colon and restored ovalbumin-suppressed Bacteroidetes and Actinobacteria populations and ovalbumin-induced Firmicutes population in gut microbiota. Treatment with ginsenoside Rd significantly alleviated ovalbumin-induced AR in mice. Conclusion: fRG and ginsenoside Rd may alleviate AR by suppressing IgE, IL-4, IL-5, and IL-13 expression and restoring the composition of gut microbiota.