Browse > Article
http://dx.doi.org/10.22889/KJP.2020.51.4.255

Three Hydroxylated Ginsenosides from Heat Treatmented Ginseng  

Lee, Sang Myung (Division of Advanced Materials, Mokwon University)
Publication Information
Korean Journal of Pharmacognosy / v.51, no.4, 2020 , pp. 255-263 More about this Journal
Abstract
Ginsenosides are considered to be the most important ingredients in ginseng. They are chemically converted by endogenous organic acids contained in ginseng and the heat applied during red ginseng processing. During this procedure, various converted ginsenosides are produced through hydrolysis of substitute sugars of ginsenosides and forming double bonds through dehydration in the dammarane skeleton. In order to study the conversion mechanism of protopanaxadiol-type ginsenosides during the heat treatment process of ginseng, we purified the three final converted ginsenosides by heating fresh ginseng for a long time. The three isolated ginsenosides were identified as 25(OH)-ginsenoside Rg5, 25(OH)-ginsenoside Rz1 and 25(OH)-ginsenoside Rg3 through NMR spectrum analysis. As a result of quantification of ginseng heated at 100 ℃ for 0 to 6 days by HPLC/UV and TLC methods, the content of 25(OH)-ginsenosides tended to increase in proportion to the time exposed to heat. In particular, the content of 25(OH)-ginsenosid Rg5 was confirmed to be noticeably increased.
Keywords
25(OH)-ginsenoside Rg5; 25(OH)-ginsenoside Rz1; 25(OH)-ginsenoside Rg3; Hydroxy ginsenosides;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 손현주, 이상명, 권예림, 박민경, 조은지, 조재혁, (2019) 국제공통기술문서(CTD)-요구수준의 인삼제품 품질평가 자료해설과 사례, p199. 에덴문화사, 대전
2 Christensen, L. P. (2009) Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55: 1-73.   DOI
3 Lee, S. M., Bae, B. S., Park, H. W., Ahn, N. G,, Cho, B. G., Cho, Y. L. and Kwak, Y. S. (2015) Characterization of korean Red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J. Ginseng Res. 39: 384-391.   DOI
4 Zhang, H., Lu, Z., Tan, G. T., Qiu, S., Farnsworth, N. R., Johan, M. and Fong, H. H. S. (2002) Polyacetyleneginsenoside-Ro, a novel triterpene saponin from Panax ginseng. Tetrahedron Lett. 43: 973-977.   DOI
5 Kitagawa, I., Taniyama, T., Hayash, T. and Yoshikawa, M. (1983) Malonyl ginsenosides Rb1, Rb2, Rc, and Rd, four new malonylated dammarane-type triterpene oligoglycosides from Ginseng radix. Chem. Pharm. Bull. 31: 3353-3356   DOI
6 Lee, S. M., Shon, H. J., Choi, C. S., Hung, T. M., Min, B. S. and Bae, K. W. (2009) Ginsenosides from heat processed ginseng. Chem. Pharm. Bull. 57: 92-94.   DOI
7 Lee, S. M., Kim, S. C., Oh, J. S., Kim, J. H. and Na, M. K. (2013) 20(R)-Ginsenoside Rf: A new ginsenoside from red ginseng extract. Phytochem. let. 6: 620-624.   DOI
8 Lee, S. M. (2015) The mass balance of protopanaxtriol ginsenosides in red ginseng process. Kor. J. Pharmacogn. 46: 223-228.
9 Kim, S. I., Park, J. H., Ryu, J. H., Park, J. D., Lee, Y. H., Park, J. H., Kim, T. H., Kim, J. M. and Baek, N. I. (1996) Ginsenoside Rg5, a genuine dammarane glycoside from Korean red ginseng. Arch. Pharm. Res. 19: 551-553.   DOI
10 Lee, S. M., Seo, H. K., Oh, J. S. and Na, M. K. (2013) Updating chemical profiling of red ginseng via the elucidation of two geometric isomers of ginsenosides Rg9 and Rg10. Food Chem. 141: 3920-3924.   DOI
11 Lee, S. M. (2014) The mechanism of acid-catalyzed conversion of ginsenoside Rf and two new 25-hydroxylated ginsenosides. Phytochem. let. 10: 209-214.   DOI
12 Park, H. W., In, G., Han, S. T., Lee, M. W., Kim, S.,Y., Kim, K. T. and Cho, B. G. (2013) Simultaneous determination of 30 ginsenosides in Panax ginseng preparations using ultra performances liquid chromatography. J. Ginseng Res. 37: 457-467.   DOI
13 Zhou, Q. L., Zhu, D. N., Yang, X. W., Xu, W. and Wan, Y. P. (2018) Development and validation of UFLC-MS/MS method for aimultaneous quantification of sixty-six saponins and their six aglycones: Application to comparative analysis of red ginseng and white ginseng. J. Pharm. Biomed. Anal. 159: 153-165.   DOI
14 Wang, J. R., Yau, L. F., Zang, R., Xia Y., Ma, J., Ho, H. M., Hu, P., Hu, M., Liu, L. and Jiana, Z. H. (2014) Transformation of ginsenosides from notoginseng by artificial gastric juice can increase cytotoxity toward cancer cells. J. Agric. Food Chem. 62: 2558-2573.   DOI
15 Park, H. W., In, G., Kim, J. H., Cho, B. G., Han, G. H. and Chang, I. M. (2014) Metabolomic approach for discrimination of processed ginseng genus Panax ginseng and Panax quinquefolius. J. Ginseng Res. 38: 59-65.   DOI
16 In, G., Ahn, N. G., Bae, B. S., Han, S. T., Noh, K. B. and Kim, C. S. (2012) New method for simultaneous quantification of 12 ginsenosides in red ginseng powder and extract: in-house method validation. J. Ginseng Res. 36: 205-210.   DOI
17 Yu, H., Wang, Y., Liu, C., Yang, J., Xu, L., Li, G., Song, J. and Jin, F. (2018) Conversion of ginsenoside Rb1 into six types of highly bioactive ginsenoside Rg3 and its derivatives by FeCl3 catalysis. Chem. Pharm. Bull. 66: 901-906.   DOI
18 Yang, H. J., Kim, J. Y., Kim, S. O., Yoo, Y. H. and Sung, S. H. (2014) Complete 1H-NMR and 13C-NMR spectral analysis of the pairs of 20(S) and 20(R) ginsenosides. J. Ginseng Res. 38: 194-202.   DOI
19 Lee, S. M. (2014) Thermal conversion pathways of ginsenoside in red ginseng processing. Nat. Prod. Sci. 20: 119-125.