• 제목/요약/키워드: Ginsenoside Rb$_1$

검색결과 531건 처리시간 0.025초

Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria

  • Park, Seong-Eun;Na, Chang-Su;Yoo, Seon-A;Seo, Seung-Ho;Son, Hong-Seok
    • Journal of Ginseng Research
    • /
    • 제41권1호
    • /
    • pp.36-42
    • /
    • 2017
  • Background: Some differences have been reported in the biotransformation of ginsenosides, probably due to the types of materials used such as ginseng, enzymes, and microorganisms. Moreover, most microorganisms used for transforming ginsenosides do not meet food-grade standards. We investigated the statistical conversion rate of major ginsenosides in ginsenosides model culture during fermentation by lactic acid bacteria (LAB) to estimate possible pathways. Methods: Ginsenosides standard mix was used as a model culture to facilitate clear identification of the metabolic changes. Changes in eight ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, and Rg2) during fermentation with six strains of LAB were investigated. Results: In most cases, the residual ginsenoside level decreased by 5.9-36.8% compared with the initial ginsenoside level. Ginsenosides Rb1, Rb2, Rc, and Re continuously decreased during fermentation. By contrast, Rd was maintained or slightly increased after 1 d of fermentation. Rg1 and Rg2 reached their lowest values after 1-2 d of fermentation, and then began to increase gradually. The conversion of Rd, Rg1, and Rg2 into smaller deglycosylated forms was more rapid than that of Rd from Rb1, Rb2, and Rc, as well as that of Rg1 and Rg2 from Re during the first 2 d of fermentation with LAB. Conclusion: Ginsenosides Rb1, Rb2, Rc, and Re continuously decreased, whereas ginsenosides Rd, Rg1, and Rg2 increased after 1-2 d of fermentation. This study may provide new insights into the metabolism of ginsenosides and can clarify the metabolic changes in ginsenosides biotransformed by LAB.

Ginsenoside Rb2: A review of pharmacokinetics and pharmacological effects

  • Miao, Longxing;Yang, Yijun;Li, Zhongwen;Fang, Zengjun;Zhang, Yongqing;Han, Chun-chao
    • Journal of Ginseng Research
    • /
    • 제46권2호
    • /
    • pp.206-213
    • /
    • 2022
  • Ginsenoside Rb2 is an active protopanaxadiol-type saponin, widely existing in the stem and leave of ginseng. Rb2 has recently been the focus of studies for pharmaceutical properties. This paper provides an overview of the preclinical and clinical pharmacokinetics for Rb2, which exhibit poor absorption, rapid tissue distribution and slow excretion through urine. Pharmacological studies indicate a beneficial role of Rb2 in the prevention and treatment of diabetes, obesity, tumor, photoaging, virus infection and cardiovascular problems. The underlying mechanism is involved in an inhibition of oxidative stress, ROS generation, inflammation and apoptosis via regulation of various cellular signaling pathways and molecules, including AKT/SHP, MAPK, EGFR/SOX2, TGF-β1/Smad, SIRT1, GPR120/AMPK/HO-1 and NF-κB. This work would provide a new insight into the understanding and application of Rb2. However, its therapeutic effects have not been clinically evaluated. Further studies should be aimed at the clinical treatment of Rb2.

Metabolic Activities of Ginseng and Its Constituents, Ginsenoside Rb1 and Rg1, by Human Intestinal Microflora

  • Choi, Jong-Ryul;Hong, Sung-Woon;Kim, Yu-Ri;Jang, Se-Eun;Kim, Nam-Jae;Han, Myung-Joo;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제35권3호
    • /
    • pp.301-307
    • /
    • 2011
  • To evaluate the difference in expressing pharmacological effects of ginseng by intestinal microflora between Koreans, metabolic activities of ginseng, ginsenoside $Rb_1$ and $Rg_1$ by 100 fecal specimens were measured. The ${\beta}$-glucosidase activity for p-nitrophenyl-${\beta}$-D-glucopyranoside was 0 to 0.42 mmol/min/mg and its average activity (mean${\pm}$SD) was $0.10{\pm}0.07$ mmol/min/mg. The metabolic activities of ginsenosides Rb1 and Rg1 were 0.01 to 0.42 and 0.01 to 0.38 pmol/min/mg, respectively. Their average activities were $0.25{\pm}0.08$ and $0.15{\pm}0.09$ pmol/min/mg, respectively. The compound K-forming activities from ginsenoside Rb1 and ginseng extract were 0 to 0.11 and 0 to 0.02 pmol/min/mg, respectively. Their average compound K-forming activities were $0.24{\pm}0.09$ pmol/min/ mg and $2.14{\pm}3.66$ fmol/min/mg, respectively. These activities all were not different between males and females, or between ages. Although compound K-forming activity from the aqueous extract of ginseng was low compared to that from ginenoside $Rb_1$, their profiles were similar to those of isolated compounds. Based on these findings, we believe that the intestinal bacterial metabolic activities of ginseng components are variable in individuals and may be used as selection markers for responders to ginseng.

경색도별(莖色度別) 고려임삼근(高麗人蔘根)의 사포닌 양상(樣相) (Saponin pattern of Panax ginseng root in relation to stem color)

  • 박훈;박귀희;이종화
    • Applied Biological Chemistry
    • /
    • 제23권4호
    • /
    • pp.222-227
    • /
    • 1980
  • 고려인삼근(자경종)(高麗人蔘根(紫莖種))의 중심부(형성층내부)(中心部(形成層內部))와 외피십피층(外皮十皮層)에 있는 ginsenoside를 고속액 체크로마토그라피로 분석(分析)하고 경(莖)의 자색정도(紫色程度)와의 관계(關係)를 검토(檢討)하였다. Ginsenoside의 단순상관(單純相關)에 의(依)한 saponin 양상(樣相)의 유사도(類似度)를 경색도군간(莖色度群間) 같은 뿌리 또는 다른 뿌리간(間)에 두부위(部位)에서 비교(比較)한 결과(結果) 경색도(莖色度)는 saponin 양상(樣相)과 관련(關聯)되지 않는 것으로 보였다. Saponin 양상(樣相)은 부위(部位)의 출처(出處)에 관계(關係)없이 서도 다른 부위간(部位間)에 약간 달랐다. 각(各) ginsenoside 함량순위(含量順位)는 표피십피층(表皮十皮層)에서 $Rg_1>Re>Rb_1>Rb_2>Rc>Rg_2{\geq}Rd>Rf$이고 중심부(中心部)에서는 $Rg_1>Re{\geq}Rg_2{\geq}Rb_1{\gg}Rb_2>Rc{\geq}Rd>Rf$였다.

  • PDF

추출 및 분획조건에 따른 인삼 조사포닌 중 ginsenoside 조성 차이 (The Difference of Ginsenoside Compositions According to the Conditions of Extraction and Fractionation of Crude Ginseng Saponins)

  • 신지영;최언호;위재준
    • 한국식품과학회지
    • /
    • 제33권3호
    • /
    • pp.282-287
    • /
    • 2001
  • 인삼 조사포닌을 기존의 고온 MeOH 추출/n-BuOH 분획법 및 고온 MeOH 추출/Diaion HP-20 흡착/MeOH 용출법과 새로이 시도된 고온 MeOH 추출/cation AG 50W흡착/$H_2O$ 용출/n-BuOH 추출법(AG 50W법), 상온 MeOH 추출/Diaion HP-20 흡착/MeOH 용출법(상온추출법)과 EtOAc/n-BuOH 직접 추출법으로 분리한 다음 기존의 HPLC/RI 방법으로 ginsenoside조성을 비교한 결과 EtOAc/n-BuOH 직접 추출법을 제외하고는 큰 차이가 없었으나 분리능과 감도가 우수한 HPLC/ELSD방법을 사용한 결과, ginsenoside $Rb_2$, Rf, $Rg_1$$Rh_1$ 등을 뚜렷이 식별할 수 있었고 추출 및 분획방법에 따라 조사포닌간 ginsenoside의 현저한 조성차이를 볼 수 있었다. 특히 AG 50W법에 의해 분리된 조사포닌에서 뚜렷한 prosapogenin 피크를 볼 수 있었으며 LC/MS의 결과, ginsenoside $Rb_1$, $Rb_2$ 등의 7종의 주종 사포닌 이외에도 5종의 prosapogenin과 1종의 chikusetsusaponin을 포함한 총 13종의 ginsenoside를 동정하였다. 새로이 정립한 HPLC 분석조건, 즉 $NH_2$ 대신에 $C_{18}$ column을 사용하고 $KH_2PO_4/CH_3CN$ gradient로 상온추출법으로 분리한 조사포닌을 분석한 결과, malonyl ginsenoside 피크를 용이하게 확인할 수 있었다.

  • PDF

Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells

  • Kim, Dong Hoi;Kim, Dae Won;Jung, Bo Hyun;Lee, Jong Hun;Lee, Heesu;Hwang, Gwi Seo;Kang, Ki Sung;Lee, Jae Wook
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.326-334
    • /
    • 2019
  • Background: The objective of our study was to analyze the neuroprotective effects of ginsenoside derivatives Rb1, Rb2, Rc, Rd, Rg1, and Rg3 against glutamate-mediated neurotoxicity in HT22 hippocampal mouse neuron cells. Methods: The neuroprotective effect of ginsenosides were evaluated by measuring cell viability. Protein expressions of mitogen-activated protein kinase (MAPK), Bcl2, Bax, and apoptosis-inducing factor (AIF) were determined by Western blot analysis. The occurrence of apoptotic and death cells was determined by flow cytometry. Cellular level of $Ca^{2+}$ and reactive oxygen species (ROS) levels were evaluated by image analysis using the fluorescent probes Fluor-3 and 2',7'-dichlorodihydrofluorescein diacetate, respectively. In vivo efficacy of neuroprotection was evaluated using the Mongolian gerbil of ischemic brain injury model. Result: Reduction of cell viability by glutamate (5 mM) was significantly suppressed by treatment with ginsenoside Rb2. Phosphorylation of MAPKs, Bax, and nuclear AIF was gradually increased by treatment with 5 mM of glutamate and decreased by co-treatment with Rb2. The occurrence of apoptotic cells was decreased by treatment with Rb2 ($25.7{\mu}M$). Cellular $Ca^{2+}$ and ROS levels were decreased in the presence of Rb2, and in vivo data indicated that Rb2 treatment (10 mg/kg) significantly diminished the number of degenerated neurons. Conclusion: Our results suggest that Rb2 possesses neuroprotective properties that suppress glutamate-induced neurotoxicity. The molecular mechanism of Rb2 is by suppressing the MAPKs activity and AIF translocation.

건삼류 생약의 인삼사포닌 성분 비교 (The Comparison of Ginseng Saponin Composition and Contents in Dried Ginseng Radices)

  • 이재범;김민영;조순현;고성권
    • 생약학회지
    • /
    • 제48권3호
    • /
    • pp.255-259
    • /
    • 2017
  • This study was conducted to provide basic information on ginseng saponin of dried ginseng radices. In order to achieve the proposed objective ginsenoside compositions of dried ginseng radices extract with 70% ethyl alcohol were examined by HPLC. The total saponin content, the sum of all ginsenosides, showed that Wild simulated ginseng (WSG), White fine ginseng (WFG), Skin White ginseng (SWG), and White ginseng (WG) stood at 2.510%, 1.643%, 0.587, and 0.429%, respectively. WSG in PPD/PPT ratio was highest at 3.190, WFG (1.934), WG (1.600), SWG (1.386) in order. In the content of ginsenoside Rb1, one of the marker compounds of ginseng, WSG (1.095%) showed the highest content, and WFG (0.527%), SWG (0.246%), WG (0.133%) in this order. The content of ginsenoside Rb1 of WSG (1.095%) was 4.5 times higher than SWG (0.246%). WSG (0.230%) showed the highest content in ginsenoside Rg1, a marker compounds of ginseng, followed by WFG (0.180%), SWG (0.141%) and WG (0.086%). The content of ginsenoside Rg1 of WSG (0.230%) was 1.6 times higher than SWG (0.141%).

Rapid and Simultaneous Determination of Ginsenosides Rb1, Rb2, Rc and Re in Korean Red Ginseng Extract by HPLC using Mass/Mass Spectrometry and UV Detection

  • Kwon, Young-Min;Lee, Sung-Dong;Kang, Hyun-Sook;Cho, Mu-Gung;Hong, Soon-Sun;Park, Chae-Kyu;Lee, Jong-Tae;Jeon, Byeong-Seon;Ko, Sung-Ryong;Shon, Hyun-Joo;Choi, Dal-Woong
    • Journal of Ginseng Research
    • /
    • 제32권4호
    • /
    • pp.390-396
    • /
    • 2008
  • For evaluating the quality of ginseng, simple and fast analysis methods are needed to determine the ginsenoside content of the ginseng products. The aim of this study was therefore to optimize conditions for fast analysis of the ginsenosides, the active ingredients in extracts of Korean red ginseng. When tandem HPLC mass spectrometry (HPLC-MS/MS) was used, four forms of ginsenoside, Rb1, Rb2, Rc, and Re, were readily separated in seven minutes using a gradient mobile phase (acetonitrile and water containing acetic acid). This is the shortest separation time reported among the studies of major ginsenoside analysis. When gradient HPLC with UV detection was used, the detection limit was high, but separation of these four ginsenosides required 25 minutes using acetonitrile and water containing formic acid as a mobile phase. HPLC-MS/MS was able to separate ginsenoside Rg1 easily regardless of the mobile phase condition, but the HPLC-UV could not separate Rg1 because acetonitrile concentration in the mobile phase had to be maintained below 20%. Ginsenoside peaks were clearer and had more sensitive detection limits when Korean red ginseng extract was analyzed by the HPLC-MS/MS, but the UV detection was useful for chromatographic fingerprinting of all four major ginsenosides of the extract: Rb1, Rb2, Rc, and Re. Extracts were found to contain 2.17 mg, 1.51 mg, 1.29 mg, and 0.46 mg of ginsenoside Rb1, Rb2, Rc, Re, respectively, per gram weight. The ratios of each ginsenoside in the extracts were 1.0 : 0.7 : 0.6 : 0.2, respectively. Taken together, the results indicate that HPLC-MS/MS spectrometry could be the most useful method for rapid analysis of even small amounts of major ginsenosides, while HPLC with UV detection could also be used for rapid analysis of major ginsenosides and for quality control of ginseng products.

Bioconversion of Ginsenoside Rb1 to Compound K using Leuconostoc lactis DC201

  • Piao, Jin-Ying;Kim, Yeon-Ju;Quan, Lin-Hu;Yang, Dong-Uk;Min, Jin-Woo;Son, Seon-Heui;Kim, Sang-Mok;Yang, Deok-Chun
    • 한국자원식물학회지
    • /
    • 제24권6호
    • /
    • pp.712-718
    • /
    • 2011
  • Ginseng (Panax ginseng) is frequently used in Asian countries as a traditional medicine. The major components of ginseng are ginsenosides. Among these, ginsenoside compound K has been reported to prevent the formation of malignancy and metastasis of cancer by blocking the formation of tumor and suppressing the invasion of cancer cells. In this study, ginsenoside $Rb_1$ was converted into compound K, via secreted ${\beta}$-glucosidase enzyme from the Leuconostoc lactis DC201 isolated, which was extracted from Kimchi. The strain DC201 was suspended and cultured in MRS broth at $37^{\circ}C$. Subsequently, the residue from the cultured broth supernatant was precipitated with EtOH and then dissolved in 20 mM sodium phosphate buffer (pH 6.0) to obtain an enzyme liquid. Meanwhile, the crude enzyme solution was mixed with ginsenoside $Rb_1$ at a ratio of 1:4 (v/v).The reaction was carried out at $30^{\circ}C$ and 190 rpm for 72 hours, and then analyzed by TLC and HPLC. The result showed that ginsenoside Rb1 was transformed into compound K after 72 hours post reaction.

인삼의 Protopanaxadiol계 사포닌으로부터 20(R)-Ginsenoside $Rh_2$ 및 20(S) 이성체의 제조 (Preparation of a 20(R)-Ginsenoside $Rh_2$ and the 20(S) Epimer from Protopanaxadiol Saponins of Panax ginseng C.A. Meyer)

  • 김신일;백남인;김동선;이유희;강규상;박종대
    • 약학회지
    • /
    • 제35권5호
    • /
    • pp.432-437
    • /
    • 1991
  • A mixture of 20(R)- and 20(S)-ginsenoside Rg$_{3}$ was obtained under mild acidic hydrolysis from protopanaxadiol saponins, ginsenosides Rb$_{1}$, Rb$_{2}$, Rc and Rd. The product was acetylated to give the peracetates, which were further converted into 20(R)-ginsenoside Rg$_{3}$, 20(S)-ginsenoside Rg$_{3}$, 20(R)-ginsenoside Rh$_{2}$ and 20(S)-ginsenoside Rh$_{2}$ by the direct alkaline treatment depending upon two kinds of temperature conditions respectively. The structure and physicochemical properties of a prosapogenin, 20(R)-ginsenoside Rh$_{2}$, were investigated.

  • PDF