• Title/Summary/Keyword: Ginsenoside $Rb_1$

Search Result 529, Processing Time 0.033 seconds

Inhibitory Effects of Ginsenoside Rb1 on Atopic Dermatitis-Like Skin Lesions in Mice

  • Park, Hye-Jin;Byeon, Hye-Eun;Choi, Ko-Woon;Rhee, Dong-Kwon;Lee, Kang-Ro;Pyo, Suhk-Neung
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • Allergies are immediate hypersensitive responses to antigens and interleukin (IL)-4 is involved in the initiation and development of allergic responses. $Rb_1$ has been known to have a variety of biological activities including anti-inflammatory activity, but the effect of $Rb_1$ on allergic responses is not known yet. The present study was undertaken to examine whether $Rb_1$ has an inhibitory effect on allergic response in mouse model. In allergic mouse model, our results showed that topical application of $Rb_1$ on atopic dermatitis (AD)-like skin lesions improved skin condition and inhibited starching behaviors. In addition, $Rb_1$ application not only suppressed mRNA expression of IL-4 and IL-10, but also prevented the nuclear factor of activated T cells 1 transcription. Moreover, $Rb_1$ application suppressed IL-4's secretion. Taken together, these results suggest that $Rb_1$ has a potent inhibitory effect in AD-related T cell cytokine production and may be a candidate for therapeutic agent in allergy.

Ginsenoside Composition and Quality Characteristics of Red Ginseng Extracts prepared with Different Extracting Methods (추출방법에 따른 홍삼추출액의 사포닌 조성과 품질특성)

  • Lee, Gang Seon;Nam, Ki Yeul;Choi, Jae Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.4
    • /
    • pp.276-281
    • /
    • 2013
  • This study was conducted to compare the contents of ginsenoside according the water extract conditions of red ginseng. In method A, red ginseng extract was prepared at $75^{\circ}C$ for 18 hours by 1 time extraction, and method B, the preparation was done at $85^{\circ}C$ for 18 hours by 1 time extraction. In method C, the primary extract prepared at $75^{\circ}C$ for 9 hours was blended with the secondary extract prepared by re-extracting the red ginseng residue obtained after the primary extraction, at $85^{\circ}C$ for 9 hours. Method D was the same procedure as method C but the extraction temperature for the primary extraction was $85^{\circ}C$ and that for the secondary extraction was $95^{\circ}C$. The contents of total and $Rb_1$, $Rg_1$ and $Rg_3$ ginsenoside were highest in Method C. The content of prosapogenin (ginsenoside $Rg_2$, $Rg_3$, $Rb_1$ and $Rb_2$) was highest in Method B. There was no consistent tendency in Brix, pH, Hue value and absorbance among extraction methods.

Effects of Black Ginseng (9 Times-Steaming Ginseng) on Hypoglycemic Action and Changes in the Composition of Ginsenosides on the Steaming Process (흑삼(구증구포인삼)이 혈당 강하에 미치는 영향 및 증포별 ginsenoside 조성 변화)

  • Kim, Suong-Nuen;Kang, Shin-Jyung
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.77-81
    • /
    • 2009
  • This study examined the effects of black ginseng (9 times-steamed ginseng) on hypoglycemic action in streptozotocininduced diabetic rats as well as changes in ginsenoside composition by the steaming process. As the number of steaming cycles increased, the amounts of crude saponin and most ginsenoside contents decreased, while the amount of ginsenoside- Rg3 and the ratio of PD/PT (=[$Rb_1+Rb_2+Rc+Rd+Rg_3]/[Re+Rb_1+Rh_1]$) increased. This ginsenoside composition is a unique characteristic compared to other types of ginseng products. In order to investigate the hypoglycemic effect of the black ginseng extract, in vivo studies were performed in rats with streptozotocin-induced diabetes. The studies showed that the administration of the black ginseng extract decreased high blood glucose levels (more than 300 mg/dL) to a normal level (102 mg/dL). These results suggest that this black ginseng extract has a significant hypoglycemic effect and can be used as an anti-diabetic substance for dietary supplements or new drugs.

Component analysis of cultivated ginseng and mountain ginseng to the change of ginsenoside components in the process of heating and fermentation. (열처리 및 발효과정이 인삼 및 산양삼의 ginsenoside 함량에 미치는 영향)

  • Cha, Bae-Cheon;Yoon, Hye-Chul;Lee, Dae-Ho;Park, Jae-Seuk;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.13 no.2
    • /
    • pp.33-49
    • /
    • 2010
  • Objectives: The aim of this experiment is to provide an objective differentiation of cultivated ginseng, mountain ginseng through component analysis, and to know the change of gin senoside components in the process of heating and fermentation Methods: Comparative analyses of ginsenoside $Rb_1$, $Rb_2$, Rc, Rd, Re, Rf, $Rg_1$, $Rg_3$, $Rh_1$, and $Rh_2$, from the cultivated ginseng 4 and 6 years, and mountain cultivated ginseng were conducted using HPLC (High Performance Liquid Chromatography, hereafter HPLC). And the same analyses were conducted in the process of heating and fermentation using mixed Lactobacillus rhamnosus, Lactobacillus plantarum, Bifidobacterium lactis for 7 days. Results: The change of ginsenosides to the process of red ginseng and fermentation, cultivated ginseng and mountain cultivated ginseng were showed another results. Mountain ginseng showed a lot of change compared with cultivated ginsengs. In the 7 days of fermentation, mountain ginseng showed that ginsenoside $Rg_1$, $Rb_1$, $Rb_2$, Rc, and Rd were decreased and increased ginsenoside Re, Rf, $Rg_3$ and $Rh_1$ were increased compared with cultivated ginseng Conclusions: It seemed that ginsenosides of mountain cultivated ginseng was better resolved than cultivated ginseng because the difference of structure or distribution of ginsenosides in the condition of fermentation.

Comparing eight types of ginsenosides in ginseng of different plant ages and regions using RRLC-Q-TOF MS/MS

  • Dai, Yu-Lin;Qiao, Meng-Dan;Yu, Peng;Zheng, Fei;Yue, Hao;Liu, Shu-Ying
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.205-214
    • /
    • 2020
  • Background: This article aims to compare and analyze the contents of ginsenosides in ginseng of different plant ages from different localities in China. Methods: In this study, 77 fresh ginseng samples aged 2-4 years were collected from 13 different cultivation regions in China. The content of eight ginsenosides (Rg3, Rc, Rg1, Rf, Rb2, Rb1, Re, and Rd) was determined using rapid resolution liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (RRLC-Q-TOF MS/MS) to comparatively evaluate the influences of cultivation region and age. Results: Ginsenoside contents differed significantly depending on age and cultivation region. The contents of ginsenosides Re, Rc, Rg1, Rg3, and Rf increased with cultivation age, whereas that of ginsenoside Rb1 peaked in the third year of cultivation. Moreover, the highest ginsenoside content was obtained from Changbai (19.36 mg/g) whereas the lowest content was obtained from Jidong (12.05 mg/g). Ginseng from Jilin Province contained greater total ginsenosides and was richer in ginsenoside Re than ginseng of the same age group in Heilongjiang and Liaoning provinces, where Rb1 and Rg1 contents were relatively high. Conclusion: In this study, RRLC-Q-TOF MS/MS was used to analyze ginsenoside contents in 77 ginseng samples aged 2-4 years from different cultivation regions. These patterns of variation in ginsenoside content, which depend on harvesting location and age, could be useful for interested parties to choose ginseng products according to their needs.

Anti-stress Activities of Ginsenoside Rb1 is Related with GABAnergic Neuron

  • JUNG In Kyung;LEE Sook Yeon;PARK Il Ho;CHEONG Jae Hoon
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.165-173
    • /
    • 2005
  • The main aim of this study was to investigate stress related activities of ginsenosides and their action mechanism. Control group and ginsenoside supplemented groups were exposed to stress while no-stress group was not done. Animals of each group (n=$8\~10$) were orally administerd 100 mg red ginseng extract (R-G), or 10 mg ginsenosides/kg body weight once a day. Animals were given materials for 5 days without stress, and then were given supplements for 5 days with restraint and electroshock stress. Mice were given materials for 5 days for experiments on anti-fatigue effect. After loading final stress, stress-related behavioral changes of experimental animals were examined and plasma corticosterone levels were measured. R-G and ginsenoside $Rb_{1}$ supplementation partially blocked the stress effects on locomotion and elevated plus-maze test in rats and mice. They also partially blocked stress induced behavioral changes such as freezing, smelling, face-washing, rearing behavior in rats. R-G and $Rb_{1}$ decrease adrenal gland size and plasma corticosterone level, which were increased by stress in rats. R-G increased enduring time on the Rota rod, cold water and horizontal wire, but $Rb_{1}$ didn't. Effects of $Rb_{1}$ on plusmaze test were inhibited by administration of flumazenil. These results suggest that $Rb_{1}$ is the main antistress principle in ginseng and it's effect is modulated by GABAnergic nervous system.

Saponin Contents and Physicochemical Properties of Red Ginseng Extract Pouch Products Collected from Ginseng Markets in Korea (국내 인삼시장에서 유통되고 있는 홍삼 파우치 제품의 사포닌 함량 및 이화학적 특성)

  • Choi, Jae-Eul;Han, Jin-Soo;Kang, Sun-Joo;Kim, Kwan-Hou;Kim, Kyoung-Hee;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.11
    • /
    • pp.1660-1665
    • /
    • 2010
  • To obtain data for the standardization of manufacturing method of red ginseng extract pouch products, saponin and physico-chemical properties of 44 Korean red ginseng extract pouch products were analyzed. The concentration of total ginsenoside contents were 5.5~185.7 mg/100 mL. Distribution of the contents of ginsenoside $Rg_3$, $Rg_2$, $Rh_1$, and $Rh_2$ known to have anticancer effect are as follows: $Rg_3$ is 1.6~46.3 mg/100 mL, $Rg_2$ is 0~22.0 mg/100 mL, $Rh_1$ is 0~4.3 mg/100 mL and that of $Rh_2$ is 0~20.4 mg/100 mL, respectively. The anti-diabetic effect of ginsenoside $Rb_2$ and Re distribution of contents were 0~10.8 mg/100 mL and 0~7.0 mg/100 mL, respectively. Among the other saponins, exhibited content to distribution of ginsenoside $Rb_1$ was 0~25.2 mg/100 mL, Rc was 0~12.5 mg/100 mL, Rd was 0~11.3 mg/100 mL, Rf was 0~5.9 mg/100 mL and $Rg_1$ was 0~4.4 mg/100 mL. Results of physicochemical characterization showed total sugar content of 226.6~3,102.9 mg/100 mL, total soluble solids content $1.4\sim9.5^{\circ}Bx$, turbidity 82.2~100.0%, pH in the range of 4.1 to 5.0, respectively. In approximately 50% of collected domestic ginseng extract pouch products (21~24 items), ginsenoside $Rb_1$, $Rb_2$, Rc, Rd, Re and $Rg_1$ were not detected, and saponin content of each product appears to differ greatly. Results indicated that standardization of production methods and standards set for red ginseng extract pouch products in Korea is needed.

Component Analysis of Cultivated Ginseng, Red Ginseng, Cultivated Wild Ginseng, and Red Wild Ginseng Using HPLC Method (HPLC를 이용한 인삼, 홍삼, 산양산삼 및 홍산삼의 성분 비교 분석)

  • Lee, Jang-Ho;Kwon, Ki-Rok;Cha, Bae-Chun
    • Journal of Pharmacopuncture
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2008
  • Objectives The aim of this experiment is to provide an differentiation of ginseng, red ginseng, cultivated wild ginseng(CWG), and red wild ginseng(RWG) through component analysis using HPLC(High Performance Liquid Chromatography, hereafter HPLC). Methods Comparative analyses of ginsenoside $Rg_3$, ginsenoside $Rh_2$, and ginsenosides $Rb_1$ and $Rg_1$ of various ginsengs were conducted using HPLC. Results 1. CWG was relatively heat-resistant and showed slow change in color during the process of steaming and drying, compared to cultivated ginseng. 2. Ginsenoside $Rg_3$ was not detected in cultivated ginseng and CWG, whereas it was high in red ginseng and RWG. Ginsenoside $Rg_3$ was more generated in red ginseng than in RWG. 3. Ginsenoside $Rh_2$ appreared during steaming and drying of cultivated ginseng, whereas it was more increased during steaming and drying of CWG. 4. Ginsenoside $Rg_1$ content was more increased during steaming and drying of cultivated ginseng, whereas it was more decreased during steaming and drying of CWG. 5. Ginsenoside $Rb_1$ content was increased about 500% during steaming and drying of cultivated ginseng, whereas it was increased about 30% during steaming and drying of CWG, indicating that ginsenoside $Rb_1$ was more generated in red ginseng than in RWG. 6. Ginsenoside $Rg_3$ content was higher, whereas ginsenoside $Rg_1$ content was lower in 11th RWG than in 9th RWG, indicating that ginsenoside $Rg_3$ content was increased and $Rg_1$ content was decreased as steaming and drying continued to proceed. Ginsenoside $Rh_2$ and $Rb_1$ contents began to be increased, followed by decreased after 9th steaming and drying process. Conclusions Above experiment data can be an important indicator for the dentification of ginseng, red ginseng, CWG, and RWG. And the following studies will be need for making good product using CWG.

Study of Optimized Simultaneous Extraction Conditions for Active Component of Ginseng Berry using Response Surface Methodology (반응표면분석을 이용한 진생베리의 활성 성분 최적 추출 조건에 관한 연구)

  • Go, Hee Kyoung;Park, Junseong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.2
    • /
    • pp.185-194
    • /
    • 2020
  • This study was conducted to find out the optimal extraction conditions to obtain extracts with a high content of ginsenosides and antioxidant activity using the ginseng berry. After extraction by stirring, ultrasound and microwave method using 70% ethanol and distilled water as solvents, the results of considering the content of ginsenoside Re and Rb1, total polyphenol content, antioxidant activity, and whether it is an environmentally friendly manufacturing method, it was confirmed that the microwave method using distilled water is good method of extraction. The optimization of extraction conditions for microwave method were made by response surface methodology (RSM). Microwave power (50 ~ 200 W, X1), solvent and ginseng berry ratio (5 ~ 20 times, X2) and the extraction time (30 ~ 120 s, X3) were used as independent variables. The model showed a good fit having a determination coefficient of the regression equation of 0.9 or more and a p-value less than 0.05. Estimated conditions for the maximized extraction of ginsenoside contents and total polyphenols were 200 w in microwave power, 20 times in solvent and ginseng berry ratio, and 90 s in extraction time. Predicted values at the optimum conditions were total polyphenols of 6.23 mg GAE/g, ginsenoside Re of 17.69 mg/g, and ginsenoside Rb1 of 16.01 mg/g. In the verification of the actual measurement the obtained values showed 6.33 mg GAE/g, 17.79 mg/g, and 15.59 mg/g, respectively, in good agreement with predicted values.

Difference of Ginsenoside Yields in Red Ginseng Parts According to Extraction Time at Low Temperature (저온에서 추출시간에 따른 홍삼 부위별 ginsenoside 함량 비교)

  • Han, Jin-Soo;Kang, Sun-Joo;Nam, Ki-Yeul;Choi, Jae-Eul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.299-305
    • /
    • 2010
  • In this study, the contents of ginsenoside were compared according to the red ginseng extract times to provide basic information for developing nutraceutical foods using red ginseng. The highest total ginsenoside contents of the main, lateral, and fine root extracts were 23.04, 65.68, and 295.92 mg/100 mL when extracted at $75^{\circ}C$ for 21, 18, and 12 hours, respectively. The total ginsenoside content showed a tendency to decrease as the extraction times were increased. The highest Rb1 and Rg1 contents of the main, lateral, and fine root extracts were 5.76, 28.39, and 117.83 mg/100 mL when extracted at $75^{\circ}C$ for 18, 15, and, 12 hours, respectively, and their highest Rb2 and Re contents were 5.76, 28.39, and 117.83 when extracted under the same conditions. The prosapogenin content of the red ginseng extract increased along with the extraction time. The highest total ginsenoside extraction ratios of the main, lateral, and fine root extracts of the red ginseng at $75^{\circ}C$ were 21.3, 21.1, and 67.1%, respectively.