• Title/Summary/Keyword: Ginseng total saponins

Search Result 149, Processing Time 0.024 seconds

Target engagement of ginsenosides in mild cognitive impairment using mass spectrometry-based drug affinity responsive target stability

  • Zhu, Zhu;Li, Ruimei;Qin, Wei;Zhang, Hantao;Cheng, Yao;Chen, Feiyan;Chen, Cuihua;Chen, Lin;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.750-758
    • /
    • 2022
  • Background: Mild cognitive impairment (MCI) is a transitional condition between normality and dementia. Ginseng is known to have effects on attenuating cognitive deficits in neurogenerative diseases. Ginsenosides are the main bioactive component of ginseng, and their protein targets have not been fully understood. Furthermore, no thorough analysis is reported in ginsenoside-related protein targets in MCI. Methods: The candidate protein targets of ginsenosides in brain tissues were identified by drug affinity responsive target stability (DARTS) coupled with label-free liquid chromatography-mass spectrometry (LC-MS) analysis. Network pharmacology approach was used to collect the therapeutic targets for MCI. Based on the above-mentioned overlapping targets, we built up a proteineprotein interaction (PPI) network in STRING database and conducted gene ontology (GO) enrichment analysis. Finally, we assessed the effects of ginseng total saponins (GTS) and different ginsenosides on mitochondrial function by measuring the activity of the mitochondrial respiratory chain complex and performing molecular docking. Results: We screened 2526 MCI-related protein targets by databases and 349 ginsenoside-related protein targets by DARTS. On the basis of these 81 overlapping genes, enrichment analysis showed the mitochondria played an important role in GTS-mediated MCI pharmacological process. Mitochondrial function analysis showed GTS, protopanaxatriol (PPT), and Rd increased the activities of complex I in a dose-dependent manner. Molecular docking also predicted the docking pockets between PPT or Rd and mitochondrial respiratory chain complex I. Conclusion: This study indicated that ginsenosides might alleviate MCI by targeting respiratory chain complex I and regulating mitochondrial function, supporting ginseng's therapeutic application in cognitive deficits.

Saponin Contents and Physicochemical Properties of Red Ginseng Extract Pouch Products Collected from Ginseng Markets in Korea (국내 인삼시장에서 유통되고 있는 홍삼 파우치 제품의 사포닌 함량 및 이화학적 특성)

  • Choi, Jae-Eul;Han, Jin-Soo;Kang, Sun-Joo;Kim, Kwan-Hou;Kim, Kyoung-Hee;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.11
    • /
    • pp.1660-1665
    • /
    • 2010
  • To obtain data for the standardization of manufacturing method of red ginseng extract pouch products, saponin and physico-chemical properties of 44 Korean red ginseng extract pouch products were analyzed. The concentration of total ginsenoside contents were 5.5~185.7 mg/100 mL. Distribution of the contents of ginsenoside $Rg_3$, $Rg_2$, $Rh_1$, and $Rh_2$ known to have anticancer effect are as follows: $Rg_3$ is 1.6~46.3 mg/100 mL, $Rg_2$ is 0~22.0 mg/100 mL, $Rh_1$ is 0~4.3 mg/100 mL and that of $Rh_2$ is 0~20.4 mg/100 mL, respectively. The anti-diabetic effect of ginsenoside $Rb_2$ and Re distribution of contents were 0~10.8 mg/100 mL and 0~7.0 mg/100 mL, respectively. Among the other saponins, exhibited content to distribution of ginsenoside $Rb_1$ was 0~25.2 mg/100 mL, Rc was 0~12.5 mg/100 mL, Rd was 0~11.3 mg/100 mL, Rf was 0~5.9 mg/100 mL and $Rg_1$ was 0~4.4 mg/100 mL. Results of physicochemical characterization showed total sugar content of 226.6~3,102.9 mg/100 mL, total soluble solids content $1.4\sim9.5^{\circ}Bx$, turbidity 82.2~100.0%, pH in the range of 4.1 to 5.0, respectively. In approximately 50% of collected domestic ginseng extract pouch products (21~24 items), ginsenoside $Rb_1$, $Rb_2$, Rc, Rd, Re and $Rg_1$ were not detected, and saponin content of each product appears to differ greatly. Results indicated that standardization of production methods and standards set for red ginseng extract pouch products in Korea is needed.

Extraction Characteristics of Saponin and Acidic Polysaccharide Based on the Red Ginseng Particle Size (홍삼의 입자크기에 따른 사포닌 및 산성다당체의 추출 특성)

  • Cho, Chang-Won;Kim, Sang-Wook;Rho, Jeong-Hae;Rhee, Young-Kyung;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.179-186
    • /
    • 2008
  • Effect of pulverization on total solid, crude saponin, and acidic polysaccharide contents of dried red ginseng main root were tested. Several particle size samples, including red ginseng main root (non pulverized), $10{\sim}40$ mesh powder, $40{\sim}100$ mesh powder, and >100 mesh powder were used in the extraction. The sequential solvent extraction method (1st: 70% EtOH at $70^{\circ}C$ for 12 hr, 2nd: 70% EtOH at $70^{\circ}C$ for 12 hr, 3rd: water at $70^{\circ}C$ for 12 hr) was applied to extract the saponins and acidic polysaccharide. Extraction yield of total solid of pulverized red ginseng ($10{\sim}40$ mesh size) was increased to 20% compared with that of non-pulverized. Especially, the crude saponin content of pulverized red ginseng ($10{\sim}40$ mesh size) showed an increase of 47% over non-pulverized. No difference in the component ratio was observed by pulverization, when the individual ginsenosides were quantified by HPLC. Also, extraction yield of acidic polysaccharide of pulverized red ginseng ($10{\sim}40$ mesh size) was increased 57% compared with that of non-pulverized. The results suggested that pulverization might be useful for increasing the extraction yield of red ginseng components.

Effects of Compositions of Saponin Fraction from Korean Red Ginseng in the Relaxation of Rabbit and Rat Corpus Cavernosum (토끼와 흰쥐 음경해면체 이완작용에 미치는 홍삼사포닌 분획별 효과)

  • Choi Young Deuk;Park Jin Ah;Choi Hyung Ki;Nam Ki Yeul
    • Journal of Ginseng Research
    • /
    • v.23 no.1 s.53
    • /
    • pp.13-20
    • /
    • 1999
  • We previously reported that Korean red ginseng (KRG) has a relaxation effect on the smooth muscles of corpus cavernosum via nitric oxide (NO) pathway and calcium and potassium channels. However, it is suggested that the active ingredients of KRG might be different depending on the sources of preparation, and there might be differences in actions for different compositions. We first investigated the composition of KRG saponins according to the extractions of the various sources of KRG, then with these extractions the relaxation effects were evaluated in vitro and hemodynamical in vivo using New Zealand white rabbit and rat corpus cavernosum. The total compositions of ginsenoside $(G-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;G-Re,\;-Rf,\;-Rg_1)$ in fractionated KRG saponin designated as TS-1, TS-2, TS-3 were $41\%,\;40\%,\;and\;62\%,$ respectively, and the ratios of PD saponin and PT saponin (PD/PT) were 1,55, 1.72, 2.25, and 2.61, the values of which were statistically significant. In vitro studies using the rabbit corpus cavernosal muscle strips, the KRG saponin relaxed cavernosal strips in a dose-dependent manner, and same results were observed in in vivo studies, that KRG saponin increased the intracavernosal pressure in the rat. There was difference in the efficacy according to fractionation techniques. The differences in the total contents of ginsenosides did not affect relaxation, rather PT saponin content was statistically related to the degree of cavernosal relaxation, and this action presumed to be mediated by NO pathway and calcium and potassium channels. In conclusion, KRG exerts relaxation which is a key step in erection via combination of effects on NO system or calcium and potassium channels. The efficacy of this action is different to the sources of ginseng, which is affected by the different composition of ginsenosides $(G-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;G-Re,\;-Rf,\;-Rg_1).$ Thus the further studies on the active ingredients such as minor ginsenosides and non-saponin components of red ginseng with maximum potency should be sought.

  • PDF

Studies on the Therapeutic Effect and Mechanism of Korean Red Ginseng Total Saponin on Infertility Caused by Polycystic Ovaries (홍삼사포닌 투여의 다낭성난소에 의한 불임 치료효과 및 기작연구)

  • Kim, Se-Eun;Oh, Dong-Min;Sim, Kyung-Mi;Jeong, Moon-Jin;Lim, Sung-Chul;Nah, Seung-Yeol;Lee, Yun-Lyul;Kang, Seong-Soo;Moon, Chang-Jong;Kim, Jong-Choon;Kim, Sung-Ho;Bae, Chun-Sik
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Experimental induction of polycystic ovary (PCO) resembling some aspects of human PCO syndrome was produced using the long-acting compound estradiol valerate (EV). Our previous study on the role of Korean red ginseng total saponins (GTS) in a steroid-induced PCO rat model demonstrated that electro-acupuncture modulates nerve growth factor (NGF) concentration in the ovaries. In fact, the involvement of a neurogenic component in the pathology of PCO-related ovarian dysfunction is preceded by an increase in sympathetic outflow to the ovaries. In the present study, we tested the hypothesis that therapeutic GTS administration modulates sympathetic nerve activity in rats with PCO. This was done by analyzing NGF protein and NGF mRNA expression involved in the pathophysiological process underlying steroid-induced PCO. EV injection resulted in significantly higher ovarian NGF mRNA expression in PCO rats compared to control rats, and PCO ovaries were counteracted by GTS administration with significantly lower expression of NGF mRNA compared to EV treated ovaries. However, NGF protein was unaffected in both EV and GTS treated ovaries compared to control rats. These results indicate that EV modulates the neurotrophic state of the ovaries, which may be a component of the pathological process by which EV induces cyst formation and anovulation in rodents.

Ginsenoside Rg1 Induces Apoptosis through Inhibition of the EpoR-Mediated JAK2/STAT5 Signalling Pathway in the TF-1/Epo Human Leukemia Cell Line

  • Li, Jing;Wei, Qiang;Zuo, Guo-Wei;Xia, Jing;You, Zhi-Mei;Li, Chun-Li;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2453-2459
    • /
    • 2014
  • Ginsenoside Rg1 is one effective anticancer and antioxidant constituent of total saponins of Panax ginseng (TSPG), which has been shown to have various pharmacological effects. Our previous study demonstrated that Rg1 had anti-tumor activity in K562 leukemia cells. The aim of this study was designed to investigate whether Rg1 could induce apoptosis in TF-1/Epo cells and further to explore the underlying molecular mechanisms. Here we found that Rg1 could inhibit TF-1/Epo cell proliferation and induce cell apoptosis in vitro in a concentration and time dependent manner. It also suppressed the expression of EpoR on the surface membrane and inhibited JAK2/STAT5 pathway activity. Rg1 induced up-regulation of Bax, cleaved caspase-3 and C-PAPR protein and down-regulation of Bcl-2 and AG490, a JAK2 specific inhibitor, could enhance the effects of Rg1. Our studies showed that EpoR-mediated JAK2/STAT5 signaling played a key role in Rg1-induced apoptosis in TF-1/Epo cells. These results may provide new insights of Rg1 protective roles in the prevention a nd treatment of leukemia.

Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng

  • Wei, Guangfei;Yang, Feng;Wei, Fugang;Zhang, Lianjuan;Gao, Ying;Qian, Jun;Chen, Zhongjian;Jia, Zhengwei;Wang, Yong;Su, He;Dong, Linlin;Xu, Jiang;Chen, Shilin
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.757-769
    • /
    • 2020
  • Background: Panax quinquefolius and Panax notoginseng are widely used and well known for their pharmacological effects. As main pharmacological components, saponins have different distribution patterns in the root tissues of Panax plants. Methods: In this study, the representative ginsenosides were detected and quantified by desorption electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues. Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin distribution by gene profiles. Results: There was saponin distribution in the root tissues differed between P. quinquefolius and P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively. Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re, Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89, CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng.

Effects of Ginsenosides and Their Metabolites on Voltage-dependent Ca2+ Channel Subtypes

  • Lee, Jun-Ho;Jeong, Sang Min;Kim, Jong-Hoon;Lee, Byung-Hwan;Yoon, In-Soo;Lee, Joon-Hee;Choi, Sun-Hye;Lee, Sang-Mok;Park, Yong-Sun;Lee, Jung-Ha;Kim, Sung Soo;Kim, Hyoung-Chun;Lee, Boo-Yong;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.52-62
    • /
    • 2006
  • In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent $Ca^{2+}$ channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned $Ca^{2+}$ channel subtypes such as ${\alpha}_{1C}$(L)-, ${\alpha}_{1B}$(N)-, ${\alpha}_{1A}$(P/Q)-, ${\alpha}_{1E}$(R)- and ${\alpha}_{1G}$(T) have not been identified. Here, we used the two-microelectrode voltage clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on $Ba^{2+}$ currents ($I_{Ba}$) in Xenopus oocytes expressing five different $Ca^{2+}$ channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the ${\alpha}_{1G}$-type. Of the various ginsenosides, $Rb_1$, Rc, Re, Rf, $Rg_1$, $Rg_3$, and $Rh_2$, ginsenoside $Rg_3$ also inhibited all five channel subtypes and ginsenoside $Rh_2$ had most effect on the ${\alpha}_{1C}$- and ${\alpha}_{1E}$-type $Ca^{2+}$ channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the ${\alpha}_{1G}$-type of $Ca^{2+}$ channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. $Rg_3$, $Rh_2$, and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the ${\alpha}_{1B}$- and ${\alpha}_{1A}$-types. These results reveal that $Rg_3$, $Rh_2$ and CK are the major inhibitors of $Ca^{2+}$ channels in Panax ginseng, and that they show some $Ca^{2+}$ channel selectivity.

Effects of Saponin Contained Plant Extracts on Ruminal Fermentation Characteristics and Methane Production (Saponin 함유 식물 추출물의 첨가가 반추위 발효성상과 메탄생성에 미치는 영향)

  • Ok, Ji-Un;Baek, Youl-Chang;Kim, Kyoung-Hoon;Lee, Sang-Cheol;Seol, Yong-Joo;Lee, Kang-Yeon;Choi, Chang-Weon;Jeon, Che-Ok;Lee, Sang-Suk;Lee, Sung-Sil;Oh, Young-Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.147-154
    • /
    • 2011
  • This study was conducted to evaluate the effects of saponin contained plant extracts on in vitro rumen fermentation characteristics and methane production. Ruminal fluid was collected from rumen cannulated Hanwoo steers fed rice straw and concentrate (5:5). Collected rumen fluids, corn starch and buffer including saponin contained plant extracts (ginseng, Ogapi, soapwort, tea plant and yucca; 0.5%/15 ml) were incubated at $39^{\circ}C$ for 24 h. All incubations were repeated five times. Rumen pH in all treatments was lower (p<0.05) compared with that of the control (no addition) during incubation time. The concentration of total VFA in all treatments was higher (p<0.05) than that of the control after 12h incubation. Compared with the control, the concentration of acetate and propionate in all treatments was lower and higher after 6h incubation, respectively. The concentration of $NH_3$-N in all treatments was lower (p<0.05) than that of the control except for Ogapi or yucca extracts supplementation. The number of protozoa in all treatments was significantly (p<0.05) lower than that of the control except for soapwort extract supplementation. The total gas production and methane production in all treatments was higher (p<0.05) and lower (p<0.05) compared with the control, except for ogapi or soapwort extracts supplementation after 12h incubation, respectively. Therefore, reduction in methane production by saponins may could be results from decreased protozoal population without any negative in vitro fermentation.