Browse > Article

Effects of Ginsenosides and Their Metabolites on Voltage-dependent Ca2+ Channel Subtypes  

Lee, Jun-Ho (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University)
Jeong, Sang Min (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University)
Kim, Jong-Hoon (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University)
Lee, Byung-Hwan (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University)
Yoon, In-Soo (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University)
Lee, Joon-Hee (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University)
Choi, Sun-Hye (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University)
Lee, Sang-Mok (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University)
Park, Yong-Sun (Department of Chemistry, Konkuk University)
Lee, Jung-Ha (Department of Life Science, Sogang University,)
Kim, Sung Soo (Korea Food Research Institute)
Kim, Hyoung-Chun (Neurotoxicology Program, College of Pharmacy, Korea Institute of Drug Abuse, Kangwon National University)
Lee, Boo-Yong (College of Medicine, Pochon CHA University)
Nah, Seung-Yeol (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University)
Abstract
In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent $Ca^{2+}$ channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned $Ca^{2+}$ channel subtypes such as ${\alpha}_{1C}$(L)-, ${\alpha}_{1B}$(N)-, ${\alpha}_{1A}$(P/Q)-, ${\alpha}_{1E}$(R)- and ${\alpha}_{1G}$(T) have not been identified. Here, we used the two-microelectrode voltage clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on $Ba^{2+}$ currents ($I_{Ba}$) in Xenopus oocytes expressing five different $Ca^{2+}$ channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the ${\alpha}_{1G}$-type. Of the various ginsenosides, $Rb_1$, Rc, Re, Rf, $Rg_1$, $Rg_3$, and $Rh_2$, ginsenoside $Rg_3$ also inhibited all five channel subtypes and ginsenoside $Rh_2$ had most effect on the ${\alpha}_{1C}$- and ${\alpha}_{1E}$-type $Ca^{2+}$ channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the ${\alpha}_{1G}$-type of $Ca^{2+}$ channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. $Rg_3$, $Rh_2$, and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the ${\alpha}_{1B}$- and ${\alpha}_{1A}$-types. These results reveal that $Rg_3$, $Rh_2$ and CK are the major inhibitors of $Ca^{2+}$ channels in Panax ginseng, and that they show some $Ca^{2+}$ channel selectivity.
Keywords
${\alpha}_{1C}$-, ${\alpha}_{1B}$-, ${\alpha}_{1A}$-, ${\alpha}_{1E}$- and ${\alpha}_{1G}$-Type $Ca^{2+}$ Channels; Ginseng; Ginsenosides; Xenopus Oocytes;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 18  (Related Records In Web of Science)
연도 인용수 순위
1 Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623−634   DOI   ScienceOn
2 Kim, J. H., Hong, Y. H., Lee, J. H., Kim, D. H., Jeong, S. M., et al. (2005a) A role for the carbohydrate portion of ginsenoside Rg3 in $Na^{+}$ channel inhibition. Mol. Cells 19, 137−142
3 Kudo, K., Tachikawa, E., Kashimoto, T., and Takahashi, E. (1998) Properties of ginseng saponin inhibition of catecholamine secretion in bovine adrenal chromaffin cells. Eur. J. Pharmacol. 341, 139−144   DOI
4 Lee, J. H., Jeong, S. M., Kim, J. H., Lee, B. H., Yoon, I. S., et al. (2005) Characteristics of ginsenoside $Rg_{3}$-mediated brain $Na^{+}$ current inhibition. Mol. Pharmacol. 68, 1114−1126   DOI   ScienceOn
5 Miller, R. J. (2001) Rocking and rolling with $Ca^{2+}$ channels. Trends Neurosci. 24, 445−449   DOI   ScienceOn
6 Mori, Y., Friedrich, T., Kim, M. S., Mikami, A., Nakai, J., et al. (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398−402   DOI   ScienceOn
7 Schneider, T., Wei, X., Olcese, R., Costantin, J. L., Neely, A., et al. (1994) Molecular analysis and functional expression of the human type E neuronal $Ca^{2+}$ channel alpha 1 subunit. Receptors Channels 2, 255−270.
8 Tachikawa, E., Kudo, T., Kashimoto, T., and Takashshi, E. (1995) Ginseng saponins reduce acetylcholine-evoked $Na^{+}$ influx and catecholamine secretion in bovine adrenal chromaffin cells. J. Pharmacol. Exp. Ther. 273, 629-636
9 Wakabayashi, C., Murakami, K., Hasegawa, H., Murata, J., and Saiki, I. (1998) An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem. Biophys. Res. Commun. 249, 725− 730
10 Wang, G., Dayanithi, G., Newcomb, R., and Lemos, J. R. (1999) An R-type $Ca^{2+}$ current in neurohypophysial terminals preferentially regulates oxytocin secretion. J. Neurosci. 19, 9235-9241
11 Dascal, N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317−387   DOI
12 Kim, S., Ahn, K., Oh, T. H., Nah, S. Y., and Rhim, H. (2002) Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem. Biophys. Res. Commun. 296, 247-254   DOI   ScienceOn
13 Nooney, J. and Lodge, D. (1996) The use of invertebrate peptide toxins to establish $Ca^{2+}$ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices. Eur. J. Pharmacol. 306, 41−50   DOI
14 Berridge, M. J., Bootman, M. D., and Lipp, P. (1998) Calcium - a life and death signal. Nature 395, 645-668   DOI   ScienceOn
15 Choi, S., Jung, S. Y., Kim, C. H., Kim, H. S., Rhim, H., et al. (2001) Effect of ginsenosides on voltage-dependent $Ca^{2+}$ channel subtypes in bovine chromaffin cells. J. Ethnopharmacol. 74, 75-81   DOI   ScienceOn
16 Murakami, M., Nakagawasai, O., Suzuki, T., Mobarakeh, I., Sakurada, Y., et al. (2004) Antinociceptive effect of different types of calcium channel inhibitors and the distribution of various calcium channel alpha 1 subunits in the dorsal horn of spinal cord in mice. Brain Res. 1024, 122−129   DOI
17 Bourinet, E., Soong, T. W., Stea, A., and Snutch, T. P. (1996) Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc. Natl. Acad. Sci. USA 93, 1486−1491
18 Choi, S., Lee, J. H., Oh, S., Rhim, H., Lee, S. M., et al. (2003) Effects of ginsenoside $Rg_{2}$ on the 5-$HT_{3A}$ receptor-mediated ion current in Xenopus oocytes. Mol. Cells 15, 108−113
19 Kim, D., Park, D., Choi, S., Sun, M., Kim, C., et al. (2003) Thalamic control of visceral nociception mediated by T-type $Ca^{2+}$ channels. Science 302, 117−119   DOI
20 Lee, J. H., Daud, A. N., Cribbs, L. L., Lacerda, A. E., Perevrzev, A., et al. (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J. Neurosci. 19, 1912-1921
21 Rhim, H., Kim, H., Lee, D. Y., Oh, T. H., and Nah, S. Y. (2002) Ginseng and ginsenoside $Rg_{3}$, a newly identified active ingredient of ginseng, modulate $Ca^{2+}$ channel currents in rat sensory neurons. Eur. J. Pharmacol. 436, 151−158   DOI   ScienceOn
22 Jeong, S. M. and Nah, S. Y. (2005) Ginseng and ion channels: are ginsenosides, active components of Panax ginseng, differential modulator of ion channels. J. Ginseng Res. 29, 19−26   DOI
23 Lee, J. H., Kim, S. H., Kim D, Hong, H. N., and Nah, S. Y. (2001) Protective effect of ginsenosides, active ingredients of Panax ginseng, on kainate-induced neurotoxicity in rat hippocampus. Neurosci. Lett. 325, 129-133   DOI   ScienceOn
24 Takahashi, T. and Momiyama, A. (1993) Different types of calcium channels mediate central synaptic transmission. Nature 366, 156−158   DOI   ScienceOn
25 Jeong, S. M., Lee, J. H., Kim, J. H., Lee, B. H., Yoon, I. S., et al. (2004) Stereospecificity of ginsenoside $Rg_{3}$ action on ion channels. Mol. Cells 18, 383−389
26 Kim, H. S., Lee, J. H., Koo, Y. S., and Nah, S. Y. (1998) Effects of ginsenosides on $Ca^{2+}$ channels and membrane capacitance in rat adrenal chromaffin cells. Brain Res. Bull. 46, 245−251   DOI   ScienceOn
27 Pragnell, M., De Waard, M., Mori, Y., Tanabe, T., Snutch, T. P., et al. (1994) Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1- subunit. Nature 368, 67-70   DOI
28 Nah, S. Y. and McCleskey, E. W. (1994) Ginseng root extract inhibits calcium channels in rat sensory neurons through a similar path, but different receptor, as ${\mu}$-type opioids. J. Ethnopharmacol. 42, 45-51   DOI   ScienceOn
29 Hasegawa, H., Suzuki, R., Nagaoka, T., Tezuka, Y., Kadota, S., et al. (2002) Prevention of growth and metastasis of murine melanoma through enhanced natural-killer cytotoxicity by fatty acid-conjugate of protopanaxatriol. Biol. Pharm. Bull. 25, 861-866   DOI   ScienceOn
30 Kim, J. H., Kim, S., Yoon, I. S., Lee, J. H., Jang, B. J., et al. (2005b) Protective effects of ginseng saponins on 3-nitropropionic acid-induced striatal degeneration in rats. Neuropharmacology 48, 743−756   DOI   ScienceOn
31 Choi, S., Jung, S. Y., Lee, J. H., Sala, F., Criado, M., et al. (2002a) Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes. Eur. J. Pharmacol. 442, 37−45
32 Watanabe, M., Sakuma, Y., and Kato, M. (2004) High expression of the R-type voltage-gated $Ca^{2+}$ channel and its involvement in $Ca^{2+}$-dependent gonadotropin-releasing hormone release in GT1-7 cells. Endocrinology 45, 2375−2383
33 Nah, S. Y. (1997) Ginseng, recent advances and trend. Korea J. Ginseng Sci. 21, 1−12
34 Nah, S. Y., Park, H. J., and McCleskey, E. W. (1995) A trace component of ginseng that inhibit $Ca^{2+}$ channels through a pertussis toxin-sensitive G protein. Proc. Natl. Acad. Sci. USA 92, 8739−8743
35 Guyot, M. C., Palfi, S., Stutzmann, J. M., Maziere, M., Hantraye, P., et al. (1997) Riluzole protects from motor deficits and striatal degeneration produced by systemic 3-nitropropionic acid intoxication in rats. Neuroscience 81, 141-149   DOI   ScienceOn
36 Wakabayashi, C., Hasegawa, H., Murata, J., and Saiki, I. (1997) In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res. 9, 411−417
37 Choi, S., Jung, S. Y., Ko, Y. S., Koh, S. R., Rhim, H., et al. (2002b) Functional expression of a novel ginsenoside Rf binding protein from rat brain mRNA in Xenopus oocytes. Mol. Pharmacol. 61, 928−935   DOI   ScienceOn
38 Lee, B. H., Jeong, S. M., Lee, J. H., Kim, D. H., Kim, J. H., et al. (2004) Differential effect of ginsenoside metabolites on the 5-$HT_{3A}$ receptor-mediated ion current in Xenopus oocytes. Mol. Cells 17, 51−56
39 Sala, F., Mulet, J., Choi, S., Jung, S. Y., Nah, S. Y., et al. (2002) Effects of ginsenoside $Rg_{2}$ on human neuronal nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 301, 1052−1059   DOI   ScienceOn
40 Liu, D., Li., B., Liu, Y., Attele, A. S., Kyle, J. W., et al. (2001) Voltage-dependent inhibition of brain $Na^{+}$ channels by American ginseng. Eur. J. Pharmacol. 413, 47-54   DOI   ScienceOn
41 Kim, D., Song, I., Keum, S., Lee, T., Jeong, M. J., et al. (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) Ttype $Ca^{2+}$ channels. Neuron 31, 35−45
42 Wheeler, D. B., Randall, A., and Tsien, R. (1994) Roles of Ntype and Q-type $Ca^{2+}$ channels in supporting hippocampal synaptic transmission. Science 264, 107-111   DOI