• 제목/요약/키워드: Ginseng root rot

검색결과 154건 처리시간 0.034초

인삼 병 연구의 과거와 현재 (Research on Ginseng Diseases in Korea)

  • 유연현;오승환
    • Journal of Ginseng Research
    • /
    • 제17권1호
    • /
    • pp.61-68
    • /
    • 1993
  • From the early 1,100 to 1,900, ginseng cultivation seemed to be practiced with management of the diseases which were, in general, referred to a "disaster" at that time. Farmers had individually developed their own methods to manage the disaster with a try and error from generations to generations. It was not determined until 1909, however, that plant pathogens as a new concept was involved in the disaster and thirteen ginseng diseases were reported in Korea by Japanese plant pathologists. The intensive researches have been carried out from 1978 when Korea Ginseng and Tobacco Research Institute was established. Among the ginseng diseases reported in ginseng growing countries, Altemaria Panax, Eotrytis sp., Cylindrocarpon destmctans, Colletotrichum gloeosporioides, Erwinia carotovora subsp. carotovora, Pythium app. Phytophthora cactomm, Sclerotinia sp., Sclerotium rolfsii, and root rot caused by nitylenchus destructor have been observed in Korea and the appropriate control methods for the major diseases were developed. However, the other nine diseases reported by former researchers have not been confirmed for their pathogenicities and/or occurrences on ginseng yetinseng yet.

  • PDF

인삼근부병 억제토양 및 유발토양의 근권환경 비교 (Comparison of Rhizosphere Environments in Soils Suppressive and Conducive to Ginseng Root Rot)

  • 정영윤;김홍진;오승환;박규진
    • 한국응용곤충학회지
    • /
    • 제23권3호
    • /
    • pp.142-146
    • /
    • 1984
  • 인삼 근부병 억제토양 및 유발토양의 추출액 배지에서 병원균인 Fusarium solani, Rhizoctonia solani, Phytophthora cactorum, Sclerotinia sp.의 균계생장과 여기에 영향을 미지는 두 토양의 근권환경을 비교하였다. 4병원균 모두 추출액을 열처리하지 않았을 때 유발토양보다 억제토양 추출액 배지에서 생장이 더 억제되였고, $100^{\circ}C$로 처리 하였을 때는 F. solani와 Sclerotinia sp.는 두 토양간에 차이가 없었으나 R. solani와 P. cactorum은 유발토양에서 균사생장이 더 좋았다. 또 억제토양 추출액의 열처리 온도를 높힐수록 모든 병원균의 생장이 증가되었다. 두 토양의 근권미생물 밀도는 Fusariumtn는 유의차가 없었으나 전세균, 진균은 모두 억제토양에 밀도가 더 높았으며 이 미생물들에 대한 Fusarium밀도의 비율도 억제토양이 더 높았다. 점토함량은 액제토양이, 모래함량은 유발토양이 각각 더 높았고, 화학성분중 Mg, Na 함량은 유발 토양이 더 많았으며 Ca, Fe, $P_2O_5$도 유의성은 없었으나 억제토양 보다 높은 경향이었다.

  • PDF

인삼 모상근 유도를 위한 최적 조건 (The Optimum Conditions for Induction of Ginseng Hairy Roots)

  • 양덕춘;김용해;양덕조;신성련;최광태
    • 한국자원식물학회지
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 1999
  • 인삼 뿌리 절편으로 부터 모상근 유기를 위한 최적 조건을 확립하고자 Agrobacterium rhirogenes와 인삼 뿌리 절편의 항생제 내성 조사 및 최적의 모상근 유도 배지를 조사하기 위하여 수행하였다. NaOCl로 인삼 뿌리를 멸균하였을 때, 오염 정도가 감소하면서 조직의 손상이 일어나지 않는 NaOCl의 농도는 7% NaOCl에서 15-20분, 9% NaOCl에서 5분으로 나타났다. 인삼근은 년수가 증가할수록 오염 정도가 심하였으며, 특히 6년근중 표피가 있는 처리구는 오염 정도가 매우 높았다. Agrobacterium의 성장억제를 위한 항생제는 tetracycline이 가장 효과적이었으며, 30mg/L 이상의 농도에서 균의 성장이 억제되었다. 하지만 30mg/L tetracycline에서 인삼 조직이 고사하였으며, cefotaxime(500mg/L), carbenicillin(500mg/L)에서 균의 성장을 완전히 억제하였으며, 조직의 손상이 일어나지 않았다. 3년근 인삼에서 모상근 유도을 위한 배지로는 1/2MS 배지에 500mg/L의 cefotaxime이 첨가된 배지가 가장 좋았으며, 인삼 뿌리 절편에 Agrobacterium을 발라주는 것 보다는 균과 공동배양할때가 절편이 좋았다. Agrobacterium접종 2주 후부터 callus가 유기되기 시작한 후, 다시 2주 후에 모상근이 유도되었다. 유도된 hairy roots는 PCR에 의하여 rol C유전자를 조사함으로서 형질전환체임을 확인하였다.

  • PDF

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun;Miao, Cui-Ping;Chen, Hua-Hong;Huang, Fang-Fang;Xia, Yu-Mei;Chen, You-Wei;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.353-360
    • /
    • 2017
  • Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

Effect of Light Receiving rate on Growth and Quality of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 추계국제학술대회
    • /
    • pp.62-62
    • /
    • 2020
  • Ginseng is a shade-plant cultivated using shading facilities. However, at too low light levels, root growth is poor, and at high light levels, the destruction of chlorophyll reduces the photosynthesis efficiency due to leaf burn and early fall leaves. The ginseng has a lightsaturation point of 12,000~15,000 lux when grown at 15 to 20℃ and 9,500 lux at 25℃. This study was conducted to select the optimal light intensity of 3-year-old ginseng grown in blue-white film plastic house. The seeds were planted in the blue-white film plastic house with different light receiving rate (March 17, 2020). Between April and September, the average air temperature in the house was 20.4-20.7℃. Average soil temperature was 18.3℃-18.5℃. The chemical properties of the test soil was as follows. The pH level was 7.0-7.4, EC was 0.5-0.6 dS/m, OM was at the levels of 33.6-37.7 g/kg, P2O5 was 513.0-590.8 mg/kg, slightly higher than the allowable 400 mg/kg. The amount of light intensity, illuminance, and solar radiation in the blue-white film house was increased as the light-receiving rate increased and the amount of light intensity was found to be 9-14% compared to the open field, 8-13% illuminance and 9-14% solar irradiation respectively. The photosynthesis rate was the lowest at 3.1 µmolCO2/m2/s in the 9% light blue-white plastic house and 4.2 and 4.0 µmolCO2/m2/s in the 12% and 14% light blue-white plastic house, respectively. These results generally indicate that the photosynthesis of plants increases with the amount of light, but the ginseng has a lower light saturation point at high temperatures, and the higher the amount of light, the lower the photosynthetic efficiency. The SPAD (chlorophyll content) value decreased as the increase of light-receiving rate, and was the highest at 32.7 in 9% light blue-white plastic house. Ginseng germination started on April 11 and took 13-15 days to germinate. The overall germination rate was 82.9-85.8%. The plant height and length of stem were long in the 9% light-receiving plastic house. The diameter of stem was thick in the 12-14% light-receiving plastic house. In the 12% and 14% light-receiving plastic house, the length and diameter of taproot was long and thick, so the fresh weight of root per plant was 20 g or more, which was heavier than 16.9 g of the 9% light-receiving plastic house. The disease incidence (Alternaria blight, Gray mold and Damping-off etc.) rate were 0.9-2.7%. The incidence of Sclerotinia rot disease was 7.5-8.4%, and root rot was 0-20.0%. The incidence ratio of rusty root ginseng was 34.4-38.7% level, which was an increase from the previous year's 15% level.

  • PDF

Antibacterial and antifungal effects of Korean propolis against ginseng disease

  • Kim, Sung-Kuk;Woo, Soon Ok;Han, Sang Mi;Bang, Kyeong Won;Kim, Se Gun;Choi, Hong Min;Moon, Hyo Jung;Lee, Sung-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제39권2호
    • /
    • pp.82-85
    • /
    • 2019
  • We investigated the anti-microbial activity of propolis against the pathogenic bacteria and fungi on ginseng. We selected six microbials that caused postharvest root rots in ginseng. Propolis extracts were prepared by using the ethanol extraction method. We seeded the bacteria and fungi related to ginseng disease on a specific culture medium, and treated it with propolis extracts by using the paper disc method. Propolis extracts indicate the anti-microbial activity against Paenibacillus polymyxa, Fusarium solani, Rhizoctonia solani AG-1 and Pythium ultimum. However, the anti-fungal activity of propolis is weak on Pseudomonas fluorescens subsp. Cellulosa and Colletotrichum gloeosporioides. As a result, the antimicrobial effects of propolis against microbial that prevent ginseng growth were confirmed. The antimicrobial effects are shown according to the concentration of propolis against root rot. The fungi also showed antibacterial effects in a dose-dependent manner.

인삼포장에서 뿌리섞음병원균의 진단을 위한 RT-PCR KIT의 개발 (Development of RT-PCR Kit for Diagnosis of Pathogenic Agent of Ginseng Root Rot in the Ginseng Field)

  • 도은수
    • 한국자원식물학회지
    • /
    • 제16권1호
    • /
    • pp.40-48
    • /
    • 2003
  • C. destructans는 인삼에서 가장 문제가 되고 있는 뿌리섞음병을 유발하는 매우 중요한 미생물이다. 현재까지 정상적인 인삼포장이나 폐포지에서도 이 병원균의 농도를 조사할 만한 방법이 없어 이를 쉽게 조사함으로서 인삼 예정지 관린시 도움을 줄 수 있는 새로운 방법이 절실이 요구되고 있다. 본 연구에서는 nested PCR이란 분자생물학적 방법을 이용하여 효과적으로 매우 낮은 농도의 C. destructans을 검출할 수 있는 방법을 개발하였다. 2개의 universal ITS primers(ITS5F와 ITS4R)을 사 용 하 여 Cylindrocarpon spp.의 rDNA로부터 ITS영역을 증폭하였다. 이어 C. destructans의 specific primer(Nest 1 과 Nest 2)을 사용하여 최적의 PCR조건으로 재증폭시켜 밴드를 확인하였다. 또한 이런 2번의 과정을 4개의 primer를 동시에 사용함으로서 한번에 확인할 수 있는 방법을 개발하였으며 이에 따른 PCR조건도 확립하였다. 따라서 본 방법에 의해서 인삼포장의 토양에서 채취된 매우 낮은 농도의 wild type C. destructans spore로부터 성공적으로 positive band을 확인함으로써 추후 인삼포장의 선정 및 4년생에서 6년까지(홍삼포) 재배기간등의 예측에 활용 될 것으로 생각된다.

인삼 추출물에 의한 Cylindrocarpon destructans의 주화성 반응 연구 (Chemotactic Response Study of Cylindrocarpon destructans towards Ginseng Root Exudates)

  • 허영화;시곤;장애화;뢰봉걸;양학;조암;이활;왕이환;이충;김종석;이승호;김영창
    • 한국약용작물학회지
    • /
    • 제24권5호
    • /
    • pp.360-369
    • /
    • 2016
  • Background: Cylindrocarpon destructans (Zins) Scholten is an important pathogenic fungus that causes ginseng root rot in many ginseng growing areas in China. Although C. destructans have been studied worldwide, research on its chemotaxis towards ginseng (Panax ginseng C. A. Meyer) root exudates in the rhizosphere remains limited. Methods and Results: In this study, we collected ginseng root exudates with three different polarities from three-year-old ginseng roots, and performed chemotaxis and spore germination assays to investigate the ability of these exudates to induce the response in C. destructans. The results showed that, compared with other conditions, when C. destructans cultivated at $20^{\circ}C$ and a pH of 6 exhibited a strong positive chemotactic response toward $2mg/{\ell}$ aqueous phase, $20mg/{\ell}$ butanol phase, and $0.2mg/{\ell}$ petroleum ether from ginseng root exudates, the chemotactic moving indexes were 0.1581, 0.1638 and 0.1441, respectively. In addition, the spore germination rate with optimal chemotactic parameters were 48%, 53%, and 41% in the aqueous phase, butanol phase and petroleum ether groups, respectiviely, which were significantly higher than that in the control group (23%) (p < 0.05). The mycelial growth rate with optimal chemotactic parameters increased with culture time, and the maximum growth rates in the aqueous phase, butanol phase and petroleum ether groups were 0.425, 0.406 and 0.364 respectively, on the 4th day. The optimal chemotactic parameters were $39.73mg/50mg/{\ell}$, $48.93mg/50mg/{\ell}$, and $31.43mg/50mg/{\ell}$, in aqueous phase, butanol phase and petroleum ether respectively, from ginseng root exudates, compared with $5.5mg/50mg/{\ell}$, in the control group. Conclusions: The present study revealed that certain ginseng root exudates containing chemical attractants act as nutritional sources or signals for C. destructans and support its colonization of ginseng roots.