• Title/Summary/Keyword: Ginseng field

Search Result 437, Processing Time 0.045 seconds

A Report on the Damage Caused by Phytosciara procera, Ginseng Stem Fungus Gnat (인삼줄기버섯파리(신칭) Phytosciara procera에 의한 피해 실태 보고)

  • Shin, Jung-Sup;Cho, Dae-Hui;Cho, Hye-Sun;Kim, Hwang-Yong;Lee, Hung-Sik
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.275-278
    • /
    • 2008
  • Ginseng stem fungus gnat, Phytosciara procera, is reported as a ginseng pest for the first time. It is new to science that a member of the family Sciaridae is a ginseng pest. In our observation, larvae of the gnat can penetrate the stem of ginseng, and then they make a shaft in shoot and root. Number of adults captured by yellow sticky traps were peaked in twice, from late July to early August and from late August to early September. In a ginseng field, 29.7% of ginseng damaged by Phytosciara procera is also infected by bacterial disease caused by Erwinia carotobora. However, there is a possibility on environmental-friendly control, as a result of decreasing effect of damage over 85% when remaining a part of berry on peduncle than tatally remove.

Effects of Soil Surface Compaction on Emergence and Growth of Directed Seeded Ginseng in Paddy Field (인삼의 논 재배시 파종 후 진압처리가 출아율과 생육에 미치는 영향)

  • Bong-Jae Seong;Moo-Geun Jee;Sun-Ick Kim;Jin-Woong Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.362-366
    • /
    • 2022
  • This study was conducted to find out the changes in the growth and yield of ginseng and the changes in the soil of direct-seeded ginseng fields after applying different compaction strengths. As a result of surface soil compactions, the topsoil hardness increases as the strength of treatment increases in the first year but topsoil hardness increased only by applying 30 kg weight of compaction in the second year. The germination rate was significantly higher (79.4% and 79.1% at 25 kg and 30 kg, respectively) in 1st year after the application of soil surface compactions. The longest plant was 35.7 cm in 4- years old ginseng in the control and the height was 26.9 cm and 26.5 cm in the soil surface compactions of 25 kg and 30 kg, respectively. In addition, the higher weight of ginseng roots of 31.3 g and 30.3 g were observed after applying 25 kg and 30 kg compaction treatment, and the lowest root weight of 25.6 g was in the control. Therefore, it is shown that after sowing, applying the weight of 25 kg to 30 kg for soil surface compaction is appropriate for better yield in direct seeded cultivation of ginseng at paddy fields.

A study of the inorganic element contents for the ginsengs of Keumsan, Chungnam

  • Song, Suck-Hwan;Sik, Chang-Gyu
    • Proceedings of the Ginseng society Conference
    • /
    • 2008.05a
    • /
    • pp.74-75
    • /
    • 2008
  • This study is for geochemical relationships between ginsengs and soils from three representative soil types from Keumsan, shale, phyllite and granite. For these study, ginsengs, with the field and weathered soils were collected from the three regions, and are analysed for the major and trace elements. In the weathered soils(avg.), the granite and phyllite areas are high in the most of elements while the shale area is low. In the correlation coefficients, negative correlations are shown in the $Al_2O_3$-MgO pair while positive correlations, are shown in the Ba-Sr, Zr, Sr-Zr and Cs-Ge pairs. In the field soils(avg.), the granite and phyllite areas are, generally, high in the most of elements while the shale area is low. In the shale area, the major elements are high in the 4 year soils, but low in the 2 year soils. The LFS(Ba, Sr, Cs) and transitional elements are high in the 2 year soils, but low in the 4 year soils. The HFS(Y, Zr) is high in the 4 year soils. In the correlation coefficients, most of the elements from the 4 year show positive relationships. Positive correlations are shown in the $Al_2O_3$-CaO, MnO-MgO, V-Tl, and Ba-Sr pairs in all localities. In the ginseng contents, clear chemical differences with the ages are shown in the shale and granite ares, but not clear in the phyllite area. In the shale area Mn, Mg, Ba, Sr, and Y contents, increase with ages but decrease in Al, Cs, Be and Cd. In the correlation coefficients, degrees of the correlations for the major elements become low with the ages. Positive correlations are shown in the Al-Mn, Ti, Mn-Ti, Mg-Ca, Ca-K, Ba-Cs, Y and Cs-Y pairs. Comparisons with ginsengs of the same ages from the different areas suggest that generally, the 2 years in the shale and 3 and 4 years in the granite area are distinctive. Relative ratios(granite/ shale area) of the ginsengs are below 1 in the major elements except Mn in the 2 year ginsengs and above 1 in the other elements except Mg and Na in the 4 year. Relative ratios(granite/ phyllite area) of the ginsengs are high in the 3 year from the phyllite area. In the relative ratios(weathered/field soils) of the soils, numbers of the elements showing the ratios of above 1 increase from the shale, to phyllite and granite in the case of the major elements, but decrease in the case of the trace elements. These results suggest that major elements are high in the granite while trace elements are high in the shale area. In the relative ratios between field soils and ginsengs(field soils/ginseng), the shale area, regardless of the ages, show differences of several hundred times in the $Al_2O_3$, $TiO_2$, Y and Tl, of several ten times in the MnO, MgO and Ba and of several times in the CaO contents. These results suggest that ginseng contents are significantly different from the field soils in the $Al_2O_3$, $TiO_2$, Y and Tl, but similar in the CaO contents. The phyllite area, regardless of the ages, show differences of several hundred times in the $Al_2O_3$, $TiO_2$, Y, Tl and Be, of several ten times in the MnO, MgO, $Na_2O$ and Ba, and of several times to ten times in the CaO, $K_2O$ and Sr contents. These results suggest that ginseng contents are significantly different from those of the field soils in the $Al_2O_3$, $TiO_2$, Y, Tl and Be, but similar in the CaO, $K_2O$ and Sr contents. The granite area, regardless of the ages, show differences of several hundred times in the $Al_2O_3$, $TiO_2$, Tl and Be, of several ten times in the Ba, and of several times to ten times in the MgO and CaO contents. Of the other elements, differences of several times to ten times are shown in the MnO, $K_2O$ and Sr contents. These results suggest that ginseng contents are significantly different from those of the field soils in the $Al_2O_3$, $TiO_2$, Tl and Be, but similar in the $K_2O$ and Sr contents. Comparisons among the different ages from the same area suggest that, in the case of shale area, differences of several hundred times in the $Al_2O_3$ and $TiO_2$, of the several ten times in the MnO, MgO and Ba and several times in the CaO and $K_2O$ are shown in the 2 year ginsengs. Differences of several hundred times in the $Al_2O_3$, $TiO_2$, Cs, Y, Tl and Be, of above several ten times in the MnO, MgO, $K_2O$ and Ba, and of several times in the CaO and Sr are shown in the 3 year ginsengs. Differences of several hundred to thousand times in the $Al_2O_3$, of above several hundred times in the $TiO_2$, Cs and Y, and of several ten times in the MnO, MgO, $K_2O$ and Ba, and of several times in the $Na_2O$ are shown in the 4 year ginsengs. These relationships suggest that, regardless of the localities in the shale area, $Al_2O_3$ contents of the soils show big differences from those of the ginsengs. Regardless of the ages of ginsengs, comparisons with the overall average contents of each area show differences of several hundred times in the $Al_2O_3$, $TiO_2$, Cs and Tl and of several ten times in the MnO. These overall relationships suggest that the $Al_2O_3$, $TiO_2$, Cs and Tl contents of the soils are higher than those of the ginsengs, show big differences between two and low different contents are found in the MnO. In detail, differences of several hundred times in the Y, and ten times in the MgO and Sr, and of several times in the CaO, $Na_2O$, $K_2O$ in the case of shale area, are shown. These results suggest that the soils are higher than the ginsengs in the Y and significantly differences in Y, and moderately differences in the MgO and Sr, and low differences in the CaO, $Na_2O$ and $K_2O$ are shown between soils and ginsengs.

  • PDF

Residues of Azoxystrobin during Cultivation and Processing of Ginseng (인삼의 재배 및 가공단계 별 Azoxystrobin 잔류성)

  • Kim, Jong-Geol;Kim, Seoung-Su;Park, Hong-Ryeol;Ji, Kwang-Young;Lee, Kyung-Hee;Ham, Hun-Ju;Im, Moo-Hyeog;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.232-240
    • /
    • 2009
  • The aim of this study was to determine the processing and reduction factors for ginseng and its commodities during ginseng processing to obtain information of pesticide residue in ginseng. For this study, azoxystrobin was used in two field containing 6 years old ginseng plants. Ginsengs were harvested and processed to obtain different commodities (Dried ginseng, red ginseng and ginseng water and alcohol extracts, red ginseng water and alcohol extracts) for pesticide analysis. The amount of residue levels from wonju and icheon for fresh ginseng were 0.05, $0.03\;mg\;kg^{-1}$ dried ginseng were 0.12, $0.14\;mg\;kg^{-1}$, red ginseng were both $0.05\;mg\;kg^{-1}$, ginseng alcohol extract were 0.28, $0.33\;mg\;kg^{-1}$, ginseng water extract were 0.22, $0.16\;mg\;kg^{-1}$, red ginseng alcohol extract were 0.31, $0.20\;mg\;kg^{-1}$ and red ginseng water extract were 0.09, $0.11\;mg\;kg^{-1}$ respectively. These data were under MRLs notified by KFDA. The processing factors for ginseng products were 3.25, 1.34, 7.84, 4.63, 6.15 and 2.56 respectively. The reduction factors for ginseng products were 1.19, 0.51, 3.41, 1.91, 2.74 and 1.00 respectively. These data showed increment during processing which could be due to concentration but considering water contents, residue levels were similar or decreased than the initial residue level during processing.

Rusty-Root Tolerance and Chemical Components in 4-year old Ginseng Superior Lines (4년생 인삼계통의 적변내성 및 화학성분 특성)

  • Lee Sung-Sik;Lee Myong-Gu;Choi Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.23 no.2 s.54
    • /
    • pp.61-66
    • /
    • 1999
  • Experiments were carried out to examine the rusty tolerance in 61 inbred lines of ginseng cultivated in field, and chemical components were analyzed to clarify the difference between healthy and rusty ginseng roots. Among them, 10 lines showed rusty tolerance (RT) while 10 lines showed rusty sensitivity (RS). The content of phenolic compound in RT was lower than that in RS in cortex, epidermis and branch & fine roots, but it was not difference between RT and RS in stele. The contents of K, Ca, Na in RT were lower than RS in cortex, and the content of Mg, Fe, Na, Mn, AI, Si in RT were lower than RS in epidermis, and the content of Fe in RT were lower than RS in branch & fine roots, but mineral contents were not difference between RT and RS in stele. The content of phenolic compound in healthy cortex was lower than that in rusty cortex in same 6-year roots, but the mineral contents were not difference between healthy and rusty cortex in same 6-year roots. In root of seedlings, the contents of phenolic compound, K and Na in RT were lower than RS. It was suggested that the contents of phenolic compound, K and Na might be marker to select rusty tolerance ginseng lines.

  • PDF

Relation between Cultural Condition and Occurrence of Internal Cavity in Red Ginseng (재배조건(栽培條件)이 홍삼(紅參)의 내공발생(內空發生)에 미치는 영향(影響))

  • Yoon, Jong-Hyuk;Kim, Jai-Joung;Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.175-180
    • /
    • 1992
  • The occurrence of internal cavity of in red ginseng is one of critical quality criteria. The occurrence of internal cavity mainly due to fresh ginseng character that is determined by growth conditions. Growth conditions and percent occurrence of internal cavity were investigated on various ginseng plantations for 6 years and the relation. ships among them were statistically analysed. In addition, field experiments were carried out seperately for the effect of special factors. 1. Internal cavity in red ginseng mainly occurred on area between central part and cortex part of tap root in red ginseng. It was suppose to be caused by characteristics of fresh ginseng. 2. Soil moisture decreased percent occurrence of internal cavity(PIC) above 27.5 % of PIC and increased below it. 3. The factors of shade structure with high intensity of light condition tend to increase PIC. PIC was decreased below 15.9 % of light transmittance rate and increased above it.

  • PDF

Anastomosis Group, Pathogenicity and Growth Characteristics of Rhizoctonia solani Causing Damping-off on Panax ginseng (인삼 잘록병균 Rhizoctonia solani의 균사융합군과 병발생 및 생육 특성)

  • Cho, Dae-Hui;Kang, Je Yong;Yu, Yun-Hyun
    • Journal of Ginseng Research
    • /
    • v.28 no.4
    • /
    • pp.183-190
    • /
    • 2004
  • On May of 2002, the 34 isolates of Rhizoctonia solani were isolated from the symptom of damping-off on basal stems of 2-year-old to 6-year-old Panax ginseng which were cultivated in the 17 fields in Kyunggi-do, Chun­gcheungnam-do and Jeollabuk-do province in Korea. All isolates were identified as anastomosis group 2-1. Pre-emer­gence damping-off occurred on underground part of stem of 2-year-old ginseng in the pot trial with artificial inoculation. However, in the 4-year-old ginseng field with artificial inoculation, post-emergence damping-off occurred. The severe incidence of damping-off was found in the 6-year-old ginseng field in Kimje-si, Jeollabuk-do province on June 5 of 2003, the rate of which showed $18.6{\%}$ of area in the field by spread of the disease since 2-year-old. The sclerotia of R. solani, started to be formed after 7 days incubation on potato dextrose agar at $25^{\circ}C,$ were grayish brown, spherical to irregular and about $500{\mu}m$ in diameter, which became dark brown after 14 days incubation. The temperature range for the myce­lial growth of R. solani isolates was $5\~30^{\circ}C,$ and the optimal temperature was $25^{\circ}C,$ their growth were very poor at $5\;or\;30^{\circ}C$. The isolates grew at the range of pH $4.5\~8.1$ tested and optimal pH for growth was pH 4.5$\~5.8%, whereas their growth were very poor above the pH 7.2.

Development of RT-PCR Kit for Diagnosis of Pathogenic Agent of Ginseng Root Rot in the Ginseng Field (인삼포장에서 뿌리섞음병원균의 진단을 위한 RT-PCR KIT의 개발)

  • 도은수
    • Korean Journal of Plant Resources
    • /
    • v.16 no.1
    • /
    • pp.40-48
    • /
    • 2003
  • Cylindrocarpon destructans is the major pathogen inducing the root rot disease in ginseng. Up to now, there is no reliable and convenient method to analyze the spore density or population of this pathogen in ginseng-growing soil or any contaminated farmlands. Therefore, it will be very valuable to develop a new and reliable method in detecting the spore of this pathogen. In this study, a molecular biological technique using two step nested PCR method, was developed. Two universal ITS primers, ITS5F and ITS4R were used in the first round of PCR to amplify a fragment of ITS region from the genomic DNA of C. destructans. The specific prmers Nest 1 and Nest 2 were designed and used in the second round of PCR to amplify a inner fragment from the first round PCR product of C. destructans. C. destructans spore, only soil samples from the diseased ginseng farm produced the positive bands, suggesting its usefulness in detecting the C. destructans spores in soil samples. Thus it is recommended to first extract the whole genomic DNA from soil samples and use it for the PCR reaction, thereby eliminating the inhibitory activity of soil components.

Adsorption and Degradation of Procymidone in Ginseng Cultivating Soils (인삼 재배토양에서의 Procymidone 흡착 및 분해)

  • Kim, Hyo-Keun;Lee, Yun-Hwan;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.286-290
    • /
    • 2002
  • This work has been conducted to investigate the behavior of pesticides in ginseng(Panax ginseng C. A. Meyer) cultivation environment, with a fungicide procymidone as a model pesticide. Procymidone adsorption on ginseng cultivating soil was studied and persistency of procymidone in soil was monitored in indoor incubation experiments at 25$^{\circ}C$ and 10$^{\circ}C$. The soil adsorption coefficients($K_{oc}$) of procymidone were in the range of 513$\sim$743 suggesting the mobility of procymidone in soil is relatively low. Procymidone showed higher persistency in soil under indoor incubation condition than outdoor field condition. The half lives estimated from the first order reaction kinetics were 248 days and 330 days at 25$^{\circ}C$ and 10$^{\circ}C$, respectively.

Identification of Endophytic Bacteria in Panax ginseng Seeds and Their Potential for Plant Growth Promotion (인삼종자로부터 분리된 내생균의 동정과 식물생장 촉진 관련 활성의 평가)

  • Um, Yurry;Kim, Bo Ra;Jeong, Jin Ju;Chung, Chan Moon;Lee, Yi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.4
    • /
    • pp.306-312
    • /
    • 2014
  • Endophytes are microorganisms that live in the internal tissues of plants without harming the host plants. In this symbiotic relationship, the host plants provide nutrients and shelter to the endophytes, in turn, endophytes can promote the growth of host plants and act as a biological control agents against plant pathogens. Plant-microbe interactions like this are noted for natural methods for sustainable agriculture and environmental conservation. However, in spite of the infinite potential, there are only a few reports on the endophytes present in ginseng. In this study, we isolated and identified the endophytes from Panax ginseng seeds and evaluated the biological activities (IAA production ability, nitrogen fixation ability, phosphate solubilization capacity, siderophore production ability, and antifungal activities) of the endophyte isolates. Eight different endophytes were identified by 16S rRNA sequencing. Most of the endophytes have antibiotic and plant growth promoting (PGP) activities. Particularly, PgSEB5-37E have the highest antibiotic activity, both PgSEB5-37B and PgSEB5-37H have high PGP traits such as an abilities to produce IAA, solubilize phosphate and fix nitrogen. These results indicated that the endophytes from P. ginseng seeds may have applicable value to many industries. In order to use the isolated endophytes, quantitative analysis and field tests are needed to be performed.