• Title/Summary/Keyword: Gingival fibroblast cell

Search Result 97, Processing Time 0.026 seconds

Development of Hair Keratin Protein to Accelerate Oral Mucosal Regeneration

  • So-Yeon Kim
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • Background: In this study, we investigated the potential use of keratin for oral tissue regeneration. Keratin is well-known for its effectiveness in skin regeneration by promoting keratinization and enhancing the elasticity and activity of fibroblasts. Because of its structural stability, high storability, biocompatibility, and safety in humans, existing research has predominantly focused on its role in skin wound healing. Herein, we propose using keratin proteins as biocompatible materials for dental applications. Methods: To assess the suitability of alpha-keratin protein as a substrate for cell culture, keratin was extracted from human hair via PEGylation. Viabilities of primary human gingival fibroblasts (HGFs) and human oral keratinocytes (HOKs) were assessed. Fluorescence immunostaining and migration assays were conducted using a fluorescence microscope and confocal laser scanning microscope. Wound healing and migration assays were performed using automated software to analyze the experimental readout and gap closure rate. Results: We confirmed the extraction of alpha-keratin and formation of the PEG-g-keratin complex. Treatment of HGFs with keratin protein at a concentration of 5 mg/ml promoted proliferation and maintained cell viability in the test group compared to the control group. HOKs treated with 5 mg/ml keratin exhibited a slight decrease in cell proliferation and activity after 48 hours compared to the untreated group, followed by an increase after 72 hours. Wound healing and migration assays revealed rapid closure of the area covered by HOKs over time following keratin treatment. Additionally, HOKs exhibited changes in cell morphology and increased the expression of the mesenchymal marker vimentin. Conclusion: Our study demonstrated the potential of hair keratin for soft tissue regeneration, with potential future applications in clinical settings for wound healing.

Evaluation of biodegradability and tissue regenerative potential of synthetic biodegradable membranes (수종의 성분해성 차폐막의 생체분해도 및 조직 재생유도 능력에 관한 연구)

  • Kim, Dong-Kyun;Ku, Young;Lee, Young-Moo;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.151-163
    • /
    • 1997
  • The purpose of this study was to evaluate on the biodegradability, biocompatibility and tissue regenerative capacity of synthetic biodegradable $mernbranes-Resolut^{(R)}$, $Guidor^{(R)}$ and $Biomesh^{(R)}$. To evaluate the cell attachment on the membranes, in vitro, the number of gingival fibroblasts attached to each membrane was counted by hemocytometer. Cytotoxicity test for the membranes was performed by MTT test with gingival fibroblast For evaluation of guided- bone regenerative potential, the amount of new bone formation in the rat calvarial defects(5mm in diameter) beneath the membranes was observed for two weeks and examined of the specimens by Massons trichrome staining. Biodegradability was observed for 2, 4, 8 and 12 weeks after implantation of each materials under the skin of rats and examined the specimens with H & E staining. The number of cell attachment were the greatest in $Biomesh^{(R)}$ and followed by $Resolut^{(R)}$. Cell viability of three membranes was almost similar levels. Biodegradability of $Resolut^{(R)}$ was the highest among three membrane and the potential of guided bone regeneration was the greatest in the $Biomesh^{(R)}$ and $Resolut^{(R)}$ was followed. These results suggested that commercially available biodegradable membranes were non-toxic and highly potential to guided bone regeneration.

  • PDF

Biological Effects Of Flurbiprofen Loaded Chitosan To Gingival Fibroblast (Flurbiprofen 함유 키토산 제제가 치은 섬유아세포에 미치는 영향)

  • Chung, Chong-Pyoung;Park, Yoon-Jeong;Lee, Seung-Jin;Rhyu, In-Cheol;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.317-333
    • /
    • 1996
  • The main goal of periodontal regeneration is to be achieved by epithelial exclusion, periodontal ligament cell activation or alveolar bone regeneration. The purpose of this study was to investigate on the physico- chemical and biological characteristics of biodegradable chitosan beads. Chitosan beads were fabricated by ionic gelation with sodium tripolyphosphate and they had the size in 300um diameter. As therapeutic agent, flurbiprofen was incorporated into the beads by 10, 20% loading contents. The release of drugs from the chitosan beads was measured in vitro. Also, biological activity tests of flurbiprofen loaded chitosan beads including cytotoxicity test, ihhibition of $IL-1{\beta}$ production, suppression to $PGE_2$ production, collagenase inhibition test, the ability of total protein synthesis, and tissue response were evaluated. The amount of flurbiprofen released from chitosan was 33-50% during 7 days. Minimal cytotoxicity was observed in chitosan beads. Flurbiprofen released from chitosan beads significantly suppressed the $IL-1{\beta}$ production of monocyte, $PGE_2$ production and markedly inhibited collagenase activity. Meanwhile, flurbiprofen released from this system showed increased ability for protein synthesis. Throughout 4 -week implantation period, no significant inflammatory cell infiltrated around chitosan bead and also fibroblast like cell types at the beads - tissue interface were revealed with gradual degradation of implanted chitosan beads. From these results, it was suggested that flurbiprofen loaded chitosan beads can be effectively useful for biocompatible local delivery system in periodontal regeneration.

  • PDF

THE EFFECTS OF HONOKIOL AND MAGNOLOL ON THE ANTIMICROBIAL, BACTERIAL COLLAGENASE ACTIVITY, CYTOTOXICITY AND CYTOKINE PRODUCTION (Magnolol과 Honokiol이 항균, 교원질 분해효소, 세포독성 및 Cytokine생산에 미치는 영향)

  • Jang, Beom-Seok;Son, Seong-Heai;Chung, Chong-Pyoung;Bae, Ki-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.145-158
    • /
    • 1993
  • The oral microbiota such as P. gingivalis, P. intermedia and A. actinomycetemcomitans play a primary role in the initiation and progression of the periodontal disease. The purpose of this study was to evaluate the antimicrobial effects and inhibitory effects of honokiol and magnolol on the bacterial collagenase activity, cytotoxicity and cytokine production of periodontopathic microorganisms. The antimicrobial activities of honokiol and magnolol was evaluted with minimum inhibition concentration. Honokiol was more active than magnolol, but less than chlorhexidine on antimicrobial activity. The inhibitory effects of magnolol and honokiol on the collagenolytic activity and cytotoxicity were evaluated using a Collagenokit CLN-100 and rapid colorimetric assay (MTT method) for cellular growth and survival of gingival fibroblast and periodontalligament cell and $[^3H]-thymidine$ incorporation for the gingival epithelial cell. The inhibitory effects on the collagenolytic activity was the highest in chlorhexidine, and the lowest in magnolol. Magnolol had the lowest cytotoxic effect and chlorhexidine had the highest. The inhibitory effects on cytokine production was evaluated using $interleukin-1{\beta}$ ELISA kit (Cistron Biotech.), IL-6, $TNF-{\alpha}$ ELISA kit (Genzyme) and inhibitory effects were higher than bacterial LPS and there is no difference among the honokiol, magnolol and chlorhexidine. From these results, the antimicrobial and antienzymatic activities of honokiol and magnolol were seemed to inhibit bacterial growth and enzyme activities with lesser cytotoxic activities. Therefore, it was suggested that honokiol and magnolol are very effective antimicrobial agents on periodontal pathogens.

  • PDF

Ethanol Extract of Smilax glabra Induces Apoptotic Cell Death in Human YD10B Oral Squamous Cell Carcinoma Cells

  • Young Sun Hwang
    • Journal of dental hygiene science
    • /
    • v.23 no.3
    • /
    • pp.216-224
    • /
    • 2023
  • Background: Smilax glabra has various pharmacological activities and is widely used as a herbal medicine. Although the incidence of oral cancer is low, the recurrence rate is high, and the 5-year survival rate is poor. It is necessary to search for anticancer drugs that increase the effect of cancer chemotherapy on heterogeneous oral tissues and reduce the side effects on normal cells. This study aimed to investigate the effects and mechanism of ethanol extract of Smilax glabra (EESG) as an anticancer drug for oral cancer. Methods: Smilax glabra root components extracted with 70% ethanol were used to analyze their effects on cancer cells. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay was performed for cytotoxicity analysis. Flow cytometry was performed to determine the cell cycle phase distribution. To observe apoptotic cells, terminal deoxynucleotidyl transferase dUTP nick end labeling and γH2AX were detected by fluorescence microscope. The protein levels of cleaved PARP and caspase were analyzed using western blotting. The activation of procaspase-3 was confirmed by measuring caspase-3 activity. Results: EESG was no cytotoxic to normal gingival fibroblast but was high in YD10B oral squamous cell carcinoma (OSCC) cells. EESG treatment increased the subdiploid DNA content of YD10B cells by assessing DNA content distribution. Chromatin condensation and DNA strand breaks increased in YD10B cells treated with EESG. EESG-treated YD10B cells had high Annexin V and low propidium iodide levels, confirming that early apoptosis was induced. In addition, increased levels of γH2AX foci, a marker of DNA damage, were observed in the nuclei of EESG-treated YD10B cells. The EESG-treated YD10B cells also exhibited decreased procaspase-3 and procaspase-9 levels, increased PARP cleavage and caspase-3 activity. Conclusion: These results indicate that EESG inhibited cancer cell proliferation by inducing apoptosis in YD10B OSCC cells.

QUANTITATIVE ANALYSIS OF TRANSFORMING GROWTH $FACTOR-{\beta}_1$ IN HUMAN FIBROBLASTS INDUCED WITH STAPHYLOCOCCUS ENTEROTOXIN B AND LIPOPOLYSACCHARIDE (Staphylococcus enterotoxin B와 lipopolysaccharide를 작용시킨 사람 섬유아 세포에서 생성된 Transforming Growth $Factor-{\beta}_1$의 정량적 분석)

  • Lee, Seong-Geun;Kim, Kwang-Hyuk;Kim, Uk-Kyu;Kim, Jong-Ryoul;Chung, In-Kyo;Yang, Dong-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.123-132
    • /
    • 2000
  • $TGF-{\beta}_1$ is a potent chemotactic factor for inflammatory cells and fibroblasts. It also stimulates the celluar source and components of extracellular matrix and the production of proteinase inhibitors. Collectively, these biologic activities lead to the accumulation and stabilization of the nascent matrix, which is vital to infection control. The objective of this study is to investigate production of $TGF-{\beta}$ in vitro fibroblast culture in the presence of Staphylococcus enterotoxin B(SEB) and/or lipopolysaccharide(LPS) and to elucidate the role of $TGF-{\beta}_1$ which may be responsible for infection control. The fibroblasts were originated from gingiva and facial dermis in 26 year-old male patient. In the presence of LPS($0.01{\mu}g$, $0.1{\mu}g$, $1.0{\mu}g$), SEB($0.01{\mu}g$, $0.l{\mu}g$, $1.0{\mu}g$) respectively, $cells(5{\times}10^3ml)$ were cultivated in vitro. At 1, 3, and 5 days after incubation, cells were counted. Also, $cells(2.5{\times}10^5ml)$ were cultivated in EMEM with LPS(0.01, 0.1 and $1.0{\mu}g$), SEB(0.01, 0.1 and $1.0{\mu}g$) respectively and $LPS(0.1{\mu}g)$ and $SEB(0.1{\mu}g)$ in combination for 24, 48, and 72 hours respectively. Culture supernatants were harvested at 1, 2, and 3 days after incubation period and triplicate culture supernatants were pooled and $TGF-{\beta}_1$ was assayed in duplicate. The results were as follows. 1. In gingival fibroblast induced with SEB and LPS respectively or in combination, the suppression of cell Proliferation occurred very significantly since 3 days after incubation, compared with the control and the production of $TGF-{\beta}_1$ occurred very significantly at 1 day after incubation, compared with the control. 2. In facial dermal fibroblast induced with SEB and LPS respectively or in combination, the suppression of cell proliferation occurred very significantly at 1 day after incubation, compared with the control. In SEB exposure, the production of $TGF-{\beta}_1$ was decreased very significantly at 1 day after incubation, compared with the control. However, in LPS, SEB and LPS exposure, the production of $TGF-{\beta}_1$ was increased very significantly at 1 day after incubation, compared with the control. In conclusion, the concentration of bacterial toxins and the incubation period correlated with cell proliferation and production of $TGF-{\beta}_1$ very significantly. The gingival and facial dermal fibroblasts have different phenotype each other The orchestrated understanding of fibroblast proliferation and $TGF-{\beta}_1$ production play an important part in host defense against the bacterial Infection and may prevent tissue necrosis such as necrotizing fasciitis and life-threatening syndrome such as multiple organ failure.

  • PDF

A study on the effect of microgroove-fibronectin complex titanium plate on the expression of various cell behavior-related genes in human gingival fibroblasts (인간치은섬유아세포의 다양한 세포행동 관련 유전자발현에 마이크로그루브-파이브로넥틴 복합 티타늄표면이 미치는 영향에 대한 연구)

  • Hwang, Yu Jeong;Lee, Won Joong;Leesungbok, Richard;Lee, Suk Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.150-161
    • /
    • 2022
  • Purpose: To determine the effects of the microgroove-fibronectin complex surface on the expression of various genes related to cellular activity in human gingival fibroblasts. Materials and Methods: Smooth titanium specimens (NE0), acid-treated titanium specimens (E0), microgroove and acid-treated titanium specimens (E60/10), fibronectin-fixed smooth titanium specimens (NE0FN), acid-treated and fibronectin-immobilized titanium specimens (E0FN), and microgroove and acid-treated titanium specimens immobilized with fibronectin (E60/10FN) were prepared. Real-time polymerase chain reaction experiments were conducted on 44 genes related to cell behavior of human gingival fibroblasts. Results: Adhesion and proliferation of human gingival fibroblast on microgroove-fibronectin complex titanium were activated through four types of signaling pathway. Integrin α5, Integrin β1, Integrin β3, Talin-2, which belong to the focal adhesion pathway, AKT1, AKT2, NF-κB, which belong to the PI3K-AKT signaling pathway, MEK2, ERK1, ERK2, which belong to the MAPK signaling pathway, and Cyclin D1, CDK4, CDK6 genes belonging to the cell cycle signaling pathway were upregulated on the microgroove-fibronectin complex titanium surface (E60/10FN). Conclusion: The microgroove-fibronectin complex titanium surface can up-regulate various genes involved in cell behavior.

Evaluation of physical property and cytotoxicity of resin infiltrant based on a triethylene glycol dimethacrylate (TEGDMA)

  • Min, Ji-Hyun;Roh, Ji-Yeon;Kim, Ki-Rim
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.2
    • /
    • pp.173-181
    • /
    • 2019
  • Objectives: The resin infiltration technique is a promising alternative therapy for arresting the early dental caries. However, there are very few reports on the safety and biocompatibility of this technique. We evaluated various properties of resin infiltrant (RI) based on a triethylene glycol dimethacrylate (TEGDMA).The water sorption (Wsp) and water solubility (Wsl) was assessed. Additionally, the cytotoxicity of RI against both animal and human fibroblast cell lines was investigated. Methods: The RI of the $Icon^{(R)}$, the first product developed for resin infiltration, is mainly composed of TEGDMA in the resin matrix. The Wsp and Wsl for the RI were measured in accordance with ISO 4049 specifications. Fourier-transform infrared spectroscopy (FTIR) was used for analyzing the polymerization before and after curing of RI. The cytotoxicity of RI against the mouse fibroblasts (L929) and human gingival fibroblasts (hTERT-hNOF) was evaluated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and the data were analyzed using one-way analysis of variance. Results: Wsp and Wsl of the RI specimens were $53.37{\mu}g/mm^3$ and $10.6{\mu}g/mm^3$, respectively. FTIR analysis revealed a slightly higher degree of curing with longer irradiation time. The degree of conversion for RI was high (80.9%) after 40 seconds of light curing. There was a significant decrease in the viability of L929 and hTERT-hNOF cells at RI extraction solution concentrations above 50%, respectively, compared to that in the negative control (p< 0.05). Conclusions: Even though the RI exhibited positive effect on the early prevention of dental caries, the clinicians should also consider the toxicity of RI on periodontal tissues.

The Effect of the IGF-I treated Gingival and Periodontal Ligament Fibroblast on Osteoblasts (IGF-I으로 처리한 치은 및 치주인대 섬유모세포가 골모세포에 미치는 영향)

  • Kim, Mi-Jeong;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.589-600
    • /
    • 2001
  • Insulin-like growth factor I (IGF-I) has the local tissue regulating actions. In bone, IGF-I increases the replication of osteoblastic lineage, probably preosteoblasts, and enhances osteoblastic collagen synthesis and matrix composition rates. The purpose of this study was to investigate the local regulatory effect of IGF-I on periodontium totally, both in an autocrine and paracrine manner. To examine the effect of IGF-I directly on osteoblast (OB) of test rats, and indirectlv on OB via periodontal ligament fibroblast (PDLF), and the effect of gingival fibroblast (GF) on OB via cellular paracrine manner for the understanding of humoral action of adjacent tissue, GF and PDLF were obtained from male Sprague-Dawley rats of six to eight weeks of age. OB was obtained iron frontal and parietal calvarial bone of Sprague-Dawley 21day-old-fetus. After each tell was Incubated 24 hours, for collecting conditioned medium, different concentrations of IGF-I (1,10,100 ng/ml,1ml/well) was adding in the GF, PDLF cells, and the supernatant from these cultures was put into the primary OB culture with $1{\times}10^4$cell/ml/well. The experimental group was divided into six groups control OB, IGF-I treated OB, OB culture with conditioned medium from PDLF, OB culture with conditioned medium from IGF-I treated PDLF, OB culture with conditioned medium from GF, OB culture with conditioned medium from IGF-I treated GF. After final IGF-I treatment, OB was Incubated for 24 hours, and alkaline phosphatase activity assay, BMP expression, cell proliferation measurement using MTT assay, total protein measurement, Collagen synthesis assay using western blot, and examination of bone nodule synthesis were done. Alkaline phosphatase expressions were increased in the group of PDLF-IGF-I supernatant treatment. Direct IGF-I treatment with concentrations of 100ng/m1 showed increased viable tell number measured by MTT assay. And IGF-I treatment did not increase total protein amount. The entire experimental group showed BMP2, 4 expression in western blot, and there was no significant difference between control and experimental groups. These results suggested that supernatant from PDLF effects on increasing cellular activities of OB regardless of IGF-I, and at high concentration, IGF-I increases OB tell proliferation.

  • PDF

Anti-inflammatory effect of non-thermal atmospheric pressure plasma for periodontitis treatment: in vitro pilot study (치주염 치료를 위한 저온상압 플라즈마의 항염효과: 예비 실험)

  • Park, You li;Kim, Hyun-Joo;Lee, Ju-Youn;Jeong, Sung-Hee;Kwon, Eun-Young;Joo, Ji-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.2
    • /
    • pp.88-94
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the anti-inflammatory effects of non-thermal atmospheric pressure plasma (NTP) on human gingival fibroblasts (HGFs) for clinical application of periodontal treatment. Materials and Methods: HGFs were treated with Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS). Customized NTP device was developed for periodontal in vitro study. Cell viability was evaluated with cell counting kit-8. The levels of inflammatory cytokines, including interleukin (IL)-8 and 6, were determined by enzyme-linked immunosorbent assay. Results: When NTP was applied, the cell viability did not change significantly, and there was no difference for 6 h and 24h. When Pg LPS was treated to HGFs, the secretion of IL-8 and IL-6 was increased compared to the control group. But when the NTP was applied, the secretion of them was significantly decreased. Conclusion: NTP did not affect cell viability of HGFs. And it inhibited the LPS-induced production of IL-8 and IL-6.