• Title/Summary/Keyword: Gibbs

Search Result 556, Processing Time 0.023 seconds

Measurement and Analysis of Open Circuit Potential in PEFC (고분자 전해질 연료전지의 개방회로 전위차 측정 및 분석)

  • 김홍건;김유신;김홍열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.134-138
    • /
    • 2004
  • The discrepancies between theoretical values and measured data of PEFC(Proton Exchange Fuel Cell) is carried out for the machine tool power generation. Rudimental approach of theoretical fuel cell open circuit potential using Gibbs free energy is employed for the examination of PEFC module. The stack temperature, stack voltage and stack current are measured during the operation of PEFC module. It is found that stack voltage and current values show the pronounced discrepancy with the results calculated by Gibbs free energy approach. It is analysed that the discrepancy is due to activation polarization, concentration overvoltage and ohmic overvoltage.

  • PDF

Generative probabilistic model with Dirichlet prior distribution for similarity analysis of research topic

  • Milyahilu, John;Kim, Jong Nam
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.4
    • /
    • pp.595-602
    • /
    • 2020
  • We propose a generative probabilistic model with Dirichlet prior distribution for topic modeling and text similarity analysis. It assigns a topic and calculates text correlation between documents within a corpus. It also provides posterior probabilities that are assigned to each topic of a document based on the prior distribution in the corpus. We then present a Gibbs sampling algorithm for inference about the posterior distribution and compute text correlation among 50 abstracts from the papers published by IEEE. We also conduct a supervised learning to set a benchmark that justifies the performance of the LDA (Latent Dirichlet Allocation). The experiments show that the accuracy for topic assignment to a certain document is 76% for LDA. The results for supervised learning show the accuracy of 61%, the precision of 93% and the f1-score of 96%. A discussion for experimental results indicates a thorough justification based on probabilities, distributions, evaluation metrics and correlation coefficients with respect to topic assignment.

Analysis of Thermodynamic Conditions for Formation of Single Phase in Bi-superconductor Thin Films (Bi 초전도 박막에서 단일상 형성을 위한 열역학 조건 분석)

  • Ahn, Joon-Ho;Park, Yong-Pill;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.304-307
    • /
    • 2001
  • High quality BSCCO thin films have been fabricated by means of an ion beam sputtering at various substrate temperatures, $T_{sub}$, and ozone gas pressures, $PO_3$. The correlation diagrams of the BSCCO phases appeared against $T_{sub}$ and $PO_3$ are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi220l and Bi2223 phases as well as Bi2212 one come out as stable phases depending on $T_{sub}$ and $PO_3$. From these results, the thermodynamic evaluations of ${\Delta}H$ and ${\Delta}S$ S, which are related with Gibbs' free energy change for single Bi2212 or Bi2223 phase are performed.

  • PDF

A Bayesian Threshold Model for Ordered Categorical Traits (순서범주형자료 분석을 위한 베이지안 분계점 모형)

  • Choi Byangsu;Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.173-182
    • /
    • 2005
  • A Bayesian threshold model is considered to analyze binary or ordered categorical traits. Gibbs sampler for making full Bayesian inferences about the category probability as well as the regression coefficients is described. The model can be regarded as an alternative to the ordered logit regression model. Numerical examples are shown to demonstrate the efficiency of the model.

Sampling Based Approach to Bayesian Analysis of Binary Regression Model with Incomplete Data

  • Chung, Young-Shik
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.493-505
    • /
    • 1997
  • The analysis of binary data appears to many areas such as statistics, biometrics and econometrics. In many cases, data are often collected in which some observations are incomplete. Assume that the missing covariates are missing at random and the responses are completely observed. A method to Bayesian analysis of the binary regression model with incomplete data is presented. In particular, the desired marginal posterior moments of regression parameter are obtained using Meterpolis algorithm (Metropolis et al. 1953) within Gibbs sampler (Gelfand and Smith, 1990). Also, we compare logit model with probit model using Bayes factor which is approximated by importance sampling method. One example is presented.

  • PDF

Bayesian Analysis for Neural Network Models

  • Chung, Younshik;Jung, Jinhyouk;Kim, Chansoo
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.155-166
    • /
    • 2002
  • Neural networks have been studied as a popular tool for classification and they are very flexible. Also, they are used for many applications of pattern classification and pattern recognition. This paper focuses on Bayesian approach to feed-forward neural networks with single hidden layer of units with logistic activation. In this model, we are interested in deciding the number of nodes of neural network model with p input units, one hidden layer with m hidden nodes and one output unit in Bayesian setup for fixed m. Here, we use the latent variable into the prior of the coefficient regression, and we introduce the 'sequential step' which is based on the idea of the data augmentation by Tanner and Wong(1787). The MCMC method(Gibbs sampler and Metropolish algorithm) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data.

A Bayesian Variable Selection Method for Binary Response Probit Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.167-182
    • /
    • 1999
  • This article is concerned with the selection of subsets of predictor variables to be included in building the binary response probit regression model. It is based on a Bayesian approach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the probit regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. The appropriate posterior probability of each subset of predictor variables is obtained through the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as the one with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

Bayesian Multiple Comparisons for Normal Variances

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.2
    • /
    • pp.155-168
    • /
    • 2000
  • Regarding to multiple comparison problem (MCP) of k normal population variances, we suggest a Bayesian method for calculating posterior probabilities for various hypotheses of equality among population variances. This leads to a simple method for obtaining pairwise comparisons of variances in a statistical experiment with a partition on the parameter space induced by equality and inequality relationships among the variances. The method is derived from the fact that certain features of the hierarchical nonparametric family of Dirichlet process priors, in general, make it amenable to solving the MCP and estimating the posterior probabilities by means of posterior simulation, the Gibbs sampling. Two examples are illustrated for the method. For these examples, the method is straightforward for specifying distributionally and to implement computationally, with output readily adapted for required comparison.

  • PDF

Bayes Inference for the Spatial Bilinear Time Series Model with Application to Epidemic Data

  • Lee, Sung-Duck;Kim, Duk-Ki
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.4
    • /
    • pp.641-650
    • /
    • 2012
  • Spatial time series data can be viewed as a set of time series simultaneously collected at a number of spatial locations. This paper studies Bayesian inferences in a spatial time bilinear model with a Gibbs sampling algorithm to overcome problems in the numerical analysis techniques of a spatial time series model. For illustration, the data set of mumps cases reported from the Korea Center for Disease Control and Prevention monthly over the years 2001~2009 are selected for analysis.

A Bayesian inference for fixed effect panel probit model

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.179-187
    • /
    • 2016
  • The fixed effects panel probit model faces "incidental parameters problem" because it has a property that the number of parameters to be estimated will increase with sample size. The maximum likelihood estimation fails to give a consistent estimator of slope parameter. Unlike the panel regression model, it is not feasible to find an orthogonal reparameterization of fixed effects to get a consistent estimator. In this note, a hierarchical Bayesian model is proposed. The model is essentially equivalent to the frequentist's random effects model, but the individual specific effects are estimable with the help of Gibbs sampling. The Bayesian estimator is shown to reduce reduced the small sample bias. The maximum likelihood estimator in the random effects model is also efficient, which contradicts Green (2004)'s conclusion.