• Title/Summary/Keyword: Gibberellic Acid

Search Result 153, Processing Time 0.031 seconds

High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel plant

  • Deore, Ajay C.;Johnson, T. Sudhakar
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2008
  • A simple, high-frequency and reproducible protocol for induction of adventitious shoot buds and plant regeneration from leaf-disc cultures of Jatropha curcas L. has been developed. Adventitious shoot buds were induced from very young leaf explants of in vitro germinated seedlings as well as mature field-grown plants cultured on Murashige and Skoog's (MS) medium supplemented with thidiazuron (TDZ) ($2.27{\mu}M$), 6-benzylaminopurine (BA) ($2.22{\mu}M$) and indole-3-butyric acid (IBA) ($0.49{\mu}M$). The presence of TDZ in the induction medium has greater influence on the induction of adventitious shoot buds, whereas BA in the absence of TDZ promoted callus induction rather than shoot buds. Induced shoot buds were multiplied and elongated into shoots following transfer to the MS medium supplemented with BA ($4.44{\mu}M$), kinetin (Kn) ($2.33{\mu}M$), indole-3-acetic acid (IAA) ($1.43{\mu}M$), and gibberellic acid ($GA_3$) ($0.72{\mu}M$). Well-developed shoots were rooted on MS medium supplemented with IBA ($0.5{\mu}M$) after 30 days. Regenerated plants after 2 months of acclimatization were successfully transferred to the field without visible morphological variation. This protocol might find use in mass production of true-to-type plants and in production of transgenic plants through Agrobacterium/biolistic-mediated transformation.

Effects of Gibberellic Acid and Abscisic Acid on Proteolysis of Senescing Leaves from Rice Seedlings (노화 수도유묘엽의 단백질분해에 미치는 GA$_3$과 ABA의 영향)

  • Kang, S. M;Kang, N. J;Cho, J. L;Kim, Z. H;Kwon, Y. W
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.4
    • /
    • pp.350-359
    • /
    • 1993
  • The effect of gibberellic acid ($GA_3) and abscisic acid (ABA) on KCl-enhanced proteolysis of senescing leaves of rice(Oryza sativa L. cv. Chilsung) was studied. Emphasis was given to their effects on KCI-enhanced efflux of amino acids and proteinase activity. When treated singly, $GA_3 affected leaf proteolysis little, while ABA increased proteolysis, the rate of amino acid efflux, and ribulose -1,5 -bisphosphate carboxylase / oxygenase (Rubisco)-degrading endoproteinase activity. An additive increase in all three parameters mentioned above was observed when leaves were treated with ABA and KCl. No such an additive effect was found when $GA_3 was treated with KCl. Both $GA_3 and ABA helped to alleviate the KCI-suppressed activity of Rubisco-degrading exoproteinases. The additive increase in proteolysis of rice leaves in the presence of both ABA and KCl could thus be ascribed to a further increase in the efflux of protein hydrolyzates and Rubisco-degrading endoproteinase activity. An increase in proteolysis was accompanied by a decrease in water absorption, and the combined treatment of ABA with KCl resulted in a further reduction of water absorption.

  • PDF

Enhancement of Seed Germination and Uniformity in Triploid Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai)

  • Phat, Phanna;Sheikh, Sameena;Lim, Jeong Hyeon;Kim, Tae Bok;Seong, Mun Ho;Chon, Hyong Gwon;Shin, Yong Kyu;Song, Young Ju;Noh, Jaejong
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.932-940
    • /
    • 2015
  • One of the main factors restricting production of triploid seedless watermelon is poor germination due to weak embryos, thick seed coats, and larger air spaces. This study was carried out to investigate the priming effects of different concentrations of chemicals, including hydrogen peroxide ($H_2O_2$), fusicoccin, and gibberellic acid (GA) on germination and seedling uniformity of triploid watermelon (Citrullus lanatus). Three commercial triploid cultivars, Seedless Plus, Sinus, and Sizero, were pretreated with water and different levels of $H_2O_2$ (2 and 4%), fusicoccin (FC: 1, 5, and $10{\mu}M$), and GA (1, 5, and $10{\mu}M$). The present findings helped to find optimal priming conditions for improving germination of triploid watermelon. Treatment with $5{\mu}M$ GA and hydropriming helped to break seed dormancy, enhancing the final germination percentages in all triploid cultivars and increasing the germination index in Sizero. These seed-priming treatments could be used on large scale for industrial applications. Moreover, hydropriming provides a simple, effective, and costless method to improve seed germination and seedling vigor of Sinus and Sizero varieties.

Studies on Practical Methods to Control Seed Vigour in Several Food Crops (주요식량작물 종자세 개선에 관한 연구)

  • 김진기
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.2
    • /
    • pp.128-138
    • /
    • 1994
  • To improve seed vigour in rice, barley and soybean, several methods of presowing treatment, using chemicals and priming in polyethylene glycol solution, were investigated. Gibberellic acid($GA_3$) slightly improved germination of rice, but other chemical treatments showed no beneficial effect on seed vigour. Aged seeds were primed in polyethylene glycol solution then rinsed and germinated with drying back. In general mean germination time increased and percentage germination decreased with in- creasing water potential of the priming solution, but there were no significant effects on spread of germination times. Priming also showed no marked improvement in germination under cold, wet, or osmotic conditions. None of the treatments used was successful in practically improving the seed germination and vigour of the tested crops. However, seed treated with GA$_3$ gave the best overall germination response.

  • PDF

Salt Tolerance of Vigna angularis during Germination and Early Seedling Growth

  • Lee, Hee-Kyung;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • The present study was undertaken in investigate the response to salinity and effect of plant growth regulators and proline under salinity stress on the germination and seedling growth of Vigna angularis. The protective effect of external Ca2+ on root elongation under saline conditions was also investigated. The seed germination of Vigna angularis decreased with an increase in salinity. The growth regulators GA3 was more effective than kinetin. At a higher salinity, low concentrations of kinetin and high concentrations of GA3 were more effective. The external application of proline and betaine improved germination under saline conditions. At a low salinity proline and betaine alleviated the salinity-induced inhibition of germination, yet at higher NaCl concentrations, proline and betaine were both ineffective. Exposure to salinity during germination was accompanied by an increase in the proline content, thereby suggesting that one compatible solute in the germinating seed would seem to be proline. The inhibition of germination by high NaCl concentrations was relatively more severe in scarified seeds than in intact seeds, indicating that the seed coat acts as a partial barrier to an Na2+ ameliorated the adverse effect of salinity stress.

  • PDF

Plant Regeneration Derived from Leaf Disk Cultures in Purple Sweetpotato (자색고구마의 잎 조직배양을 통한 식물체 재생)

  • Park, Hyae-Jeong;Ahn, Young-Sup;Jeong, Byeong-Choon;Park, Hyeon-Yong
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.245-249
    • /
    • 2003
  • This study was carried out to establish a regeneration system from leaf explant of purple sweetpotato(Ipomoea batatas L.) The optimal concentrations of plant growth regulators for callus induction and shoot formation were determined. The optimal combination for callus formation was 1$\mu$M 2,4-D 5$\mu$M BM, and highest yield of embryogenic calli were observed on Murashige and Skoog basal medium containing 0.5$\mu$M 2,4-D under light condition after 4weeks of culture. Embryogenec callus was subcultured on medium supplemented with 5$\mu$M ABA for 4 days. Subsequently, regeneration of adventitious shoots occurred when these embryogenic calli were transferred onto medium with 3∼6$\mu$M gibberellic acid. Regenerated shoots were developed into normal plantlets.

In Vitro Regeneration of Pongamia pinnata Pierre

  • Sujatha, K.;Hazra, Sulekha
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2006
  • Pongamia pinnata Pierre is a tree legume, having potential in production of raw material for biodiesel. A protocol for in wk propagation of this plant was standardized using seedling explants. Growth regulators (GR) including gibberellic acid $(GA_3),\;N^6-benzylaminopurine(BA)$, thidiazuron (TDZ), and Adenine sulphate (Ads) were tested for optimum germination of seeds. Removal of seed coat prior to germination, controlled fungal growth partially but enhanced bacterial growth. Antibiotic cefotaxime was ineffective in controlling bacterial contamination. Seedling derived nodal explants and cotyledon nodes with attached cotyledons were excised and cultured for induction of shoots. Optimum sprouting and multiplication of shoot buds were obtained in MS medium supplemented with $8.88{\mu}M$ BA. These buds differentiated and rooted on medium devoid of GR. Optimum growth of Pongamia seedling was obtained in cotton plugged culture vessels. Reculturing of the cotyledon node explants produced more shoots from the same site. This process of removing shoots and reculturing of cotyledon node was followed for eight passages yielding 4 to 8 shoots in each cycle. The shoots (75%) rooted on half strength MS basal medium supplemented with 0.22% charcoal. All plants survived on transfer to soil. This is the first report on in vitro regeneration of Pongamia pinnata. This report demonstrates the possibility of coupling more than one parameter in single experiment to hasten the process of standardization. The process of cycling the nodal explant repeatedly for production of large number of shoots from single meristem may find application in genetic transformation experiments wherein meristems are used for transformation.

A Basic Helix-Loop-Helix Transcription Factor Regulates Cell Elongation and Seed Germination

  • Kim, Jin-A;Yun, Ju;Lee, Minsun;Kim, Youn-Sung;Woo, Jae-Chang;Park, Chung-Mo
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.334-341
    • /
    • 2005
  • Plants are sessile and rely on a wide variety of growth hormones to adjust growth and development in response to internal and external stimuli. We have identified a gene, designated NAN, encoding a basic helix-loop-helix (bHLH) transcription factor that regulates cell elongation and seed germination in plants. NAN has an HLH motif in its C-terminal region but does not have any other discernible homologies to bHLH proteins. A bipartite nuclear localization signal is located close to the HLH motif. An Arabidopsis mutant, nan-1D, in which NAN is activated by the insertion of the 35S enhancer, exhibits growth retardation with short hypocotyls and curled leaves. It is also characterized by reduced seed germination and apical hook formation, symptomatic of GA deficiency or disrupted GA signaling. The phenotypic effects of nan-1D were increased by treatment with paclobutrazol (PAC), an inhibitor of gibberellic acid (GA) biosynthesis. NAN is constitutively expressed throughout the life cycle. Our observations indicate that NAN has a housekeeping role in plant growth and development, particularly in seed germination and cell elongation, and that it may modulate GA signaling.

Gibberellin Effects on Inflorescence Development, Bud Dormancy and Root Development in North American Ginseng

  • Rolston, L.J.;Proctor, J.T.A.;Fletcher, R.A.;Murr, D.P.
    • Journal of Ginseng Research
    • /
    • v.26 no.1
    • /
    • pp.17-23
    • /
    • 2002
  • Gibberellic acid (GA) was applied to field-grown 3-year-old North American ginseng (Panax quinqueiolius L.) between 1 and 4 times, before and during bloom in 1999. Applications of both GA$_3$ and GA$\sub$4+7/ four times (x4) to the developing inflorescences increased maximum pedicel length, and seed head diameter and height. Treatment with GA$\sub$4+7/ increased mean and total root fresh weight linearly, whereas those treated with GA$_3$ did not show similar increases. Both GA$_3$ and GA$\sub$4+7/ at 50, 100 and 200 mg L$\^$-1/ (x4) increased the incidence of breaking of dormancy of perennating buds with GA$_3$ being twice as effective as GA$\sub$4+7/. Both GA$_3$ and GA$\sub$4+7/ treatments resulted in an increased number of new bud initials forming per root, with the number of new initials per root increased two-fold by the GA$_3$ sprays compared to GA$\sub$4+7/.

RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli

  • Lee, Kyounghee;Park, Ok-Sun;Seo, Pil Joon
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.484-494
    • /
    • 2016
  • Plant cells have a remarkable ability to induce pluripotent cell masses and regenerate whole plant organs under the appropriate culture conditions. Although the in vitro regeneration system is widely applied to manipulate agronomic traits, an understanding of the molecular mechanisms underlying callus formation is starting to emerge. Here, we performed genome-wide transcriptome profiling of wild-type leaves and leaf explant-derived calli for comparison and identified 10,405 differentially expressed genes (> two-fold change). In addition to the well-defined signaling pathways involved in callus formation, we uncovered additional biological processes that may contribute to robust cellular dedifferentiation. Particular emphasis is placed on molecular components involved in leaf development, circadian clock, stress and hormone signaling, carbohydrate metabolism, and chromatin organization. Genetic and pharmacological analyses further supported that homeostasis of clock activity and stress signaling is crucial for proper callus induction. In addition, gibberellic acid (GA) and brassinosteroid (BR) signaling also participates in intricate cellular reprogramming. Collectively, our findings indicate that multiple signaling pathways are intertwined to allow reversible transition of cellular differentiation and dedifferentiation.