Browse > Article

A Basic Helix-Loop-Helix Transcription Factor Regulates Cell Elongation and Seed Germination  

Kim, Jin-A (Graduate School of Chemistry and Molecular Engineering, Seoul National University)
Yun, Ju (Graduate School of Chemistry and Molecular Engineering, Seoul National University)
Lee, Minsun (Graduate School of Chemistry and Molecular Engineering, Seoul National University)
Kim, Youn-Sung (Graduate School of Chemistry and Molecular Engineering, Seoul National University)
Woo, Jae-Chang (Department of Biology, Mokpo National University)
Park, Chung-Mo (Graduate School of Chemistry and Molecular Engineering, Seoul National University)
Abstract
Plants are sessile and rely on a wide variety of growth hormones to adjust growth and development in response to internal and external stimuli. We have identified a gene, designated NAN, encoding a basic helix-loop-helix (bHLH) transcription factor that regulates cell elongation and seed germination in plants. NAN has an HLH motif in its C-terminal region but does not have any other discernible homologies to bHLH proteins. A bipartite nuclear localization signal is located close to the HLH motif. An Arabidopsis mutant, nan-1D, in which NAN is activated by the insertion of the 35S enhancer, exhibits growth retardation with short hypocotyls and curled leaves. It is also characterized by reduced seed germination and apical hook formation, symptomatic of GA deficiency or disrupted GA signaling. The phenotypic effects of nan-1D were increased by treatment with paclobutrazol (PAC), an inhibitor of gibberellic acid (GA) biosynthesis. NAN is constitutively expressed throughout the life cycle. Our observations indicate that NAN has a housekeeping role in plant growth and development, particularly in seed germination and cell elongation, and that it may modulate GA signaling.
Keywords
Apical Hook Formation; bHLH Transcription Factor; Cell Elongation; Seed Germination;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Achard, P., Vriezen, W. H., Van Der Straeten, D., and Harberd, N. P. (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15, 2816-2825   DOI   ScienceOn
2 Bethke, P. C. and Jones, R. L. (1998) Gibberellin signaling. Curr. Opin. Plant Biol. 1, 440–446   DOI   ScienceOn
3 Gilroy, S. and Jones, R. L. (1994) Perception of gibberellin and abscisic acid at the external face of the plasma membrane of barley (Hordeum vulgare L.) aleurone protoplasts. Plant Physiol. 104, 1185–1192
4 Sun, T. (2000) Gibberellin signal transduction. Curr. Opin. Plant Biol. 3, 374-380   DOI   ScienceOn
5 Toledo-Ortiz, G., Huq, E., and Quail, P. H. (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15, 1749-1770   DOI
6 Atchley, W. R., Therhalle, W., and Dress, A. (1999) Positional dependence, cliques and predictive motifs in the bHLH protein domain. J. Mol. Evol. 48, 501–516   DOI
7 Vriezen, W. H., Achard, P., Harberd, N. P., and Van Der Straeten, D. (2004) Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J. 37, 505-516   DOI   ScienceOn
8 Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743   DOI   ScienceOn
9 Huq, E. and Quail, P. H. (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J. 21, 2441–2450   DOI   ScienceOn
10 Mitsunaga, S., Tashiro, T., and Yamaguchi, J. (1994) Identification and characterization of gibberellin-insensitive mutants selected from among dwarf mutants of rice. Theor. Appl. Genet. 87, 705–712
11 Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., et al. (1997) The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev. 11, 3194–3205   DOI
12 Grandori, C., Cowley, S. M., James, L. P., and Eisenman, R. N. (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653– 699   DOI   ScienceOn
13 Lim, M.-H., Kim, J., Kim, Y.-S., Chung, K.-S., Seo, Y.-H., et al. (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16, 731-740   DOI   ScienceOn
14 Kurosawa, E. (1926) Experimental studies on the nature of the substance secreted by the 'bakanae' fungus. Nat. Hist. Soc. Formosa 16, 213-227
15 Lee, S., Cheng, H., King, K. E., Wang, W., He, Y., et al. (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 16, 646–658   DOI   ScienceOn
16 Koornneef, M., Bentsink, L., and Hilhost, H. (2002) Seed dormancy and germination. Curr. Opin. Plant Biol. 5, 33–36   DOI   ScienceOn
17 Peng, J. and Harberd, N. P. (2002) The role of GA-mediated signalling in the control of seed germination. Curr. Opin. Plant Biol. 5, 376-381   DOI   ScienceOn
18 Silverstone, A. L., Mak, P. Y., Martinez, E. C., and Sun, T. P. (1997) The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146, 1087–1099
19 Weigel, D., Ahn, J. H., Blazquez, M. A., Borevitz, J. O., Christensen, S. K., et al. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003-1013   DOI   ScienceOn
20 Bewley, J. D. (1997) Seed germination and dormancy. Plant Cell 9, 1055–1066   DOI   ScienceOn
21 Massari, M. E. and Murre, C. (2000) Helix-loop-helix proteins: Regulators of transcription in eukaryotic organisms. Mol. Cell. Biol. 20, 429–440   DOI
22 Bereterbide, A., Hernould, M., Castera, S., and Mouras, A. (2001) Inhibition of cell proliferation, cell expansion and differentiation by the Arabidopsis SUPERMAN gene in transgenic tobacco plants. Planta 214, 22–29   DOI
23 Silverstone, A. L., Jung, H.-S., Dill, A., Kawaide, H., Kamiya, Y., et al. (2001) Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13, 1555-1565   DOI
24 Liu, Y. G., Mitsukawa, N., Oosumi, T., and Whittier, R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457-463   DOI   ScienceOn
25 Thomas, S. G. and Sun, T. (2004) Update on gibberellin signaling. A tale of the tall and the short. Plant Physiol. 135, 668-676   DOI   ScienceOn
26 Borner, R., Kampmann, G., Chandler, J., Gleissner, R., Wisman, E., et al. (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 24, 591–599   DOI   ScienceOn
27 Sakamoto, T., Kamiya, N., Ueguchi-Tanaka, M., Iwahori, S., and Matsuoka, M. (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 15, 581–590   DOI   ScienceOn
28 Dill, A. and Sun, T. (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159, 777–785
29 King, K. E., Moritz, T., and Harberd, N. P. (2001) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159, 767– 776
30 Ogas, J., Cheng, J.-C., Sung, Z. R., and Somerville, C. (1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277, 91–94   DOI   ScienceOn
31 Jacobsen, S. E., Binkowski, K. A., and Olszewski, N. E. (1996) SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc. Natl. Acad. Sci. USA 93, 9292–9296
32 Lehman, A., Black, R., and Ecker, J. R. (1996) HOOKLESS1, an ethylene-response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85, 183-194   DOI   ScienceOn
33 Thornton, T. M., Swain, S. M., and Olszewski, N. E. (1999) Gibberellin signal transduction presents ellipsisthe SPY who O-GlcNAc'd me. Trends Plant Sci. 4, 424–428   DOI   ScienceOn
34 Fairchild, C. D., Schumaker, M. A., and Quail, P. H. (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev. 14, 2377-2391
35 Lovegrove, A. and Hooley, R. (2000) Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci. 5, 102-110   DOI   ScienceOn
36 Olszewski, N., Sun, T., and Gubler, F. (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14 (Suppl.), S61–S80
37 Wen, C. K. and Chang, C. (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14, 87–100   DOI
38 Richards, D. E., King, K. E., Ait-ali, T., and Harberd, N. P. (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 67–88   DOI
39 Chandler, P. M., Marion-Poll, A., Ellis, M., and Gubler, F. (2002) Mutants at the Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol. 129, 181–190   DOI   ScienceOn
40 Hooley, R., Beale, M. H., and Smith, S. J. (1991) Gibberellin perception at the plasma membrane of Avena fatua aleurone protoplasts. Planta 183, 274–280
41 Lee, Y. J., Kim, J. H., Bae, S., Rho, S.-K., and Choe, S. Y. (2004) Mechanisms of transcriptional repression by TEL/ RUNX1 fusion protein. Mol. Cells 17, 217-222   DOI
42 Raz, V. and Ecker, J. R. (1999) Regulation of differential growth in the apical hook of Arabidopsis. Development 126, 3661- 3668
43 Hedden, P. and Phillips A. L. (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci. 5, 523– 530   DOI   ScienceOn
44 Ledent, V. and Vervoort, M. (2001) The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res. 11, 754–770   DOI   ScienceOn