• Title/Summary/Keyword: Geumgang watershed

Search Result 10, Processing Time 0.029 seconds

Analysis of Water Balance and Development of the Irrigation Water Management System in Geumgang 2nd District (금강II지구 유역물수지 분석 및 용수관리 프로그램 개발)

  • Kim, Jin-Taek;Oh, Soo-Hun;Kang, Suk-Min
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.487-490
    • /
    • 2003
  • Geumgang 2nd agricultural comprehensive development project is to develope the infrastructure in 43,000ha agricultural area. For this is the very large project, it is necessary to consider the plan of water use comprehensively. Therefore, watershed water balance model for this project has been developed and a variety of analysis has been carried out. And Geumgang Project Water Management System has been developed for the manager of irrigation facilities.

  • PDF

Application of Grouping Method to select Priority Restoration Streams in Geumgang Watershed based on Analysis of Pollution Factors (하천수질 오염요소 분석을 근거로 금강수계의 우선정비 대상하천 선정을 위한 집단화 기법적용)

  • Lee, Sang Ho;Hwang, Jeong Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.661-669
    • /
    • 2013
  • River-water quality has been greatly improved during past several decades with the extraordinary expansion for the wastewater treatment capacities by the government. Research aims to select the priority restoration streams based on the chronicle data for tributaries in Geumgang watershed as the main stream area in the Chungchungnamdo province. The quality of BOD, phosphorus and percent of sewered population on 15 branch streams were compared by the grouping methods. The results of group D streams by category I that exceed 3.0 mg/L for BOD and 0.1 mg/L for phosphorus were Seuksung, Ganggyung and Bangchuk stream. The results of group D streams by category II that exceed 3.0 mg/L for BOD and less than 63.5 % of average percent of sewered population were Ganggyung, Gilsan, Bangchuk and Seuksung stream. The final results of selected streams drawn by the chronicle data which exceeded the standard quality and lower than the average percent of sewered population were Seoksung, Gangeyung and Bangchuk stream. The pollution of rivers in the down streams were more serious than in the upper streams. Their watersheds have to be improved river water quality, especially to extend sewer systems as well as wastewater treatment facilities.

Comparative Evaluation between Administrative and Watershed Boundary in Carbon Sequestration Monitoring - Towards UN-REDD for Mt. Geum-gang of North Korea - (탄소 저장량 감시에서 배수구역과 행정구역의 비교 평가 - 금강산에 대한 UN-REDD 대응 차원에서 -)

  • Kim, Jun-Woo;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.439-454
    • /
    • 2013
  • UN-REDD (United Nations programme on Reducing Emissions from Deforestation and forest Degradation) is currently being emerged as one of important mechanism to reduce carbon dioxide in relation to the deforestation. Although administrative boundary has already gained world-wide recognition as a typical method of monitoring unit in the process of GHG (Greenhouse Gas) reduction project, this approach did not provide a realistic evidence in the carbon sequestering monitoring in terms of UN-REDD; the meaningful comparison of land use patterns among watershed boundaries, interpretation for distribution trends of carbon density, calculation of opportunity cost, leakage management, etc. This research proposes a comparative evaluation framework in a more objective and quantitative way for carbon sequestering monitoring between administrative and watershed boundary approaches. Mt. Geumgang of North Korea was selected as a survey objective and an exhaustive and realistic comparison of carbon sequestration between the two approaches was conducted, based on change detection using TM satellite images. It was possible for drainage boundary approach to identify more detailed area-wide patterns of carbon distribution than traditional administrative one, such as estimations of state and trends, including historical trends, of land use / land cover and carbon density in the Mt. Geumgang. The distinctive changing trends in terms of carbon sequestration were specifically identified over the watershed boundary from 4.0% to 34.8% while less than 1% difference was observed in the administrative boundaries, which were resulting in almost 21-22%. It is anticipated that this research output could be used as a valuable reference to support more scientific and objective decision-making in introducing watershed boundary as carbon sequestering monitoring unit.

Inflow Water into Saemangeum Area from Other Watershed (타 유역에서 새만금 유역으로 유입되는 수량 변화)

  • Choi, Jin-Kyu;Son, Jae-Gwon;Kim, Tai-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.543-546
    • /
    • 2003
  • This study was carried out to survey the amount of inflow water from Geumgang reservoir, Yongdam dam and Sumjin dam into Saemangeum area, and to provide the basic data to use and manage the water resources of Saemangeum district effectively. The total volume of inflow water from the above hydraulic facilities was measured as $775.8{\times}10^6m^3$ in 2002.

  • PDF

Determination of Prior Areas for Livestock Excreta Pollution Survey (가축분뇨실태조사를 위한 우선 조사 대상지역 선정 방안 도출)

  • Ryu, Hong-Duck;Park, Bae Kyung;Chung, Eu Gene;Ahn, Ki Hong;Choi, Won-Sik;Kim, Yongseok;Rhew, Doughee
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1085-1099
    • /
    • 2015
  • The purposes of this study were to suggest the methodology to select prior areas in the environmental pollution survey for livestock excreta (EPSLE) as well as to elucidate the validity of the methodology. In this study, the prior areas in the EPSLE were determined by examining the number of compost facilities categorized according to the three levels of size including the basin, the sub-basin and the watershed, respectively, based on the data from "Annual Nation-wide Pollution Sources Survey (2012)". The results suggested that the list of prior basins were Nakdong, Geum, Youngsan and Han river basins in order. Also, it was examined that the prior sub-basins in the four river basins including Nakdong, Geum, Youngsan and Han rivers were Naesung Stream, Geumgang Gongju, Juam Dam and Namhan Downstream, respectively. The prior watersheds in the sub-basins of Naesung stream, Geumgang Gongju, Juam Dam and Namhan Downstream were Seocheon Downstream, Geum Stream, Gyeombaek Suwipyo and Yanghwa Stream, respectively. The validity of the methodology used in this study was elucidated by analyzing the correlation of the number of compost facilities with the concentrations of T-N and T-P observed in the end-points of sub-basins. The results of correlation analysis showed that the concentrations of T-N and T-P increased with the number of compost facilities. Specifically, there was the stronger correlation between the number of compost facilities and the concentrations of T-N than that for T-P. Consequently, it was proved that the methodology used in this work was valid and rational for the selection of prior areas in environmental pollution survey for EPSLE.

Application of ArcGIS-based Model Developed to Estimate Monthly Potential Soil Loss (월단위 토양유실가능성 추정을 위해 개발된 ArcGIS 기반의 모형 적용)

  • Yu, Na Young;Shin, Min Hwan;Kim, Jonggun;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.109-126
    • /
    • 2017
  • Universal soil loss equation (USLE) is used to estimate soil loss solely or employed in any hydrologic models. Since soil erosion has been an issue in South Korea for decades, the Ministry of Environment enacted a law to regulate soil erosion in 2012, which is the Notification of topsoil erosion status. The notification is composed of preliminary and field investigations, the preliminary investigation suggests to use USLE and provides USLE factors. However, the USLE factors provided in the notification was prepared at least 10 years ago, therefore it is limited to reflect recent climate changes. Moreover the current yearly USLE approach does not provide an opportunity to consider seasonal variation of soil erosion in South Korea. A GIS-based model was therefore applied to evaluate the yearly USLE approach in the notification. The GIS-based model employs USLE to estimate soil loss, providing an opportunity to estimate monthly soil loss with monthly USLE factor databases. Soil loss was compared in five watersheds, which were Geumgang, Hangang, Nakdonggang, Seomjingang, and Yeongsangang watersheds. The minimum difference was found at Seomjingang watershed, the yearly potential soil loss were 40.15 Mg/ha/yr by the notification approach and 34.42 Mg/ha/yr by the GIS-based model using monthly approach. And, the maximum difference was found at Nakdonggang watershed, the yearly potential soil loss were 27.01 Mg/ha/yr by the notification approach and 10.67 Mg/ha/yr by the GIS-based model using monthly approach. As a part of the study result, it was found that the potential soil loss can be overestimated in the notification approach.

Assessment of Soil Loss Estimated by Soil Catena Originated from Granite and Gneiss in Catchment (소유역단위 화강암/편마암 기원 토양 연접군(catena)에 따른 토양 유실 평가)

  • Hur, Seung-Oh;Sonn, Yeon-Kyu;Jung, Kang-Ho;Park, Chan-Won;Lee, Hyun-Hang;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.383-391
    • /
    • 2007
  • This study was conducted for an assessment through the estimation of soil loss by each catchment classified by soil catena. Ten catchments, which are Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01, Gyongancheon02, Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02, Youngsangang08, were selected from the hydrologic unit map and the detailed soil digital map (1:25,000) for this study. The catchments like Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01 and Gyongancheon02 were mainly composed with soils originated from gneiss. The catchments like Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 and Youngsangang08 were mainly composed with soils originated from granites. The grades, which are divided into seven grades with A(very tolerable), B(tolerable), C(moderate), D(low), E(high), F(severe), G(very severe), of soil erosion estimated by USLE in catchments were distributed in most A and B because of paddy land and forestry. In detailed, the soil erosion grade of catchments mainly distributing soils originated from gneiss showed more the distribution of B and C than it of catchments mainly distributing soils originated from granites. The reason of results would be derived from topographic characteristics of soils originated from gneiss located at mountainous. The soil loss according to soil catena linked with Songsan and Jigok series, which are soils originated from gneiss was calculated with $7.66ton\;ha^{-1}\;yr^{-1}$. The soil loss of Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 which have the soil catena linked with Samgak and Sangju soil series originated from granite, was calculated with $5.55ton\;ha^{-1}\;yr^{-1}$. The soil loss of Youngsangang08 which have the soil catena linked with Songjung and Baeksan soil series originated from granite was calculated with $9.6ton\;ha^{-1}\;yr^{-1}$, but the conclusion on soil loss in this kind of soil catena would be drawn from the analysis of more catchments. In conclusion, the results of this study inform that the classification of soil catena by catchments and estimation of soil loss according to soil catena would be effective for analysis on the grade of non-point pollution by soil erosion in a catchment.

A Study to Define Area of Concern for Potential Soil Loss in Geumgang Watershed by KORSLE-based GIS model (한국형 토양유실공식의 GIS 기반 모형에 의한 금강 유역에 대한 토양유실 우심지역 선정에 관한 연구)

  • Kim, Jonggun;Yang, JaeE;Lim, Kyoung Jae;Kim, Sung Chul;Lee, Giha;Hwang, Sangil;Yu, Nayoung;Park, Youn Shik
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.29-36
    • /
    • 2017
  • Universal soil loss equation (USLE) has been frequently employed to estimate potential soil loss in land since it was developed based on the statewide data measured and collected in the United States. The equation is an empirical model mainly used for U.S. soil, thus it has been recently modified to reflect Korean soil conditions and named as Korean Soil Loss Equation (KORSLE). The modified equation was implemented in ArcGIS software, and used for estimation of potential soil loss from 2003 to 2016 in the thirty-eight Water Protection Districts. Five out of the thirty-eight districts were identified as the area of potential soil erosion most severly. In those five districts, potential soil erosion were estimated to be more than 50 Mg/ha/year that requires site investigation under supervision of the Korean Ministry of Environment. Distinctive site characteristics were found in the potential soil loss estimation such that the districts of low potential soil loss had low five factors in the aggregate. However, if one of more factors are dominantly large, the potential soil loss significantly increased. This study provides a useful tool to identify the potential areas for soil erosion and the important factors that play an important role in the estimation process.

A Study on the Optimal Operation and Policy of the Boryeong Dam Diverion Pipe Line Using the SWAT Model (SWAT 모형을 이용한 보령댐 도수로 운영 방안 및 정책 연구)

  • Park, Bumsoo;Yoon, Hyo Jik;Hong, Yong Seok;Kim, Sung Pyo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.546-558
    • /
    • 2020
  • While industrialization has provided in abundance, the pollution it creates has caused untold damage to the environment, increasing the frequency and severity of natural disasters through changes in global climate patterns. The World Risk Forum's (WEF) World Risk Report presented the results of a survey of experts from around the world detailing the most influential risk factors over the next decade. Notably, the failure to respond to climate change ranked first and the global water crisis third. The extreme drought in the western Chungnam province was unexpected in 2016. At the time, the water level of Boryeong Dam was drastically decreased due to receiving less than half the average recorded rainfall in the region that year. The Boryeong Dam diversion pipeline has the capacity to solve the water shortage problem between these two regions by providing water from Geumgang to the western part of Chungnam, including Boryeong City. Current weather trends suggest drought is likely to continue in western Chungnam, which uses the Boryeong Dam as an intake source. This makes it necessary to operate Boryeong Dam diversion pipeline in an efficient and effective manner. SWAT is a watershed scale model developed to predict the impact of land management practices on water. The SWAT model was used in this study to evaluate the adequacy of the Boryeong Dam diversion pipeline operational plan by comparing it to present Boryeong Dam diversion pipeline operation. By investigating the number of days required to reach each reservoir stage, we determined that the number of days required to reach the boundary stage was less than that of the current operation. This determination accounts for the caveats that the Boryeong Dam waterway was not operated and only one pump will be operated from October to May of next year. As our results suggest, the most stable operation scenario is to operate two pumps at all times. This can be accomplished by operating two pumps from the caution stage to increase the number of pumps whenever the stage is raised. In addition to the stable operation of the Boryeong Dam pipeline, policy considerations are required with regard to imposing a water use charge on users of the Boryeong Dam region.

A Study on the Characteristics of Stream Flow Path and Water System Distribution in Gugok Garden, Korea (한국 구곡원림(九曲園林)의 하천 유로 및 수계별 분포 특성)

  • Rho, Jae-Hyun;Choi, Young-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.50-65
    • /
    • 2021
  • In this study, the water flow system by measuring the flow-way type and distance of flow path that composes the Gugok through literature survey, field survey, and map work on Gugok gardens in Korea whose existence has been confirmed, while investigating and analyzing watersheds, river orders, and river grades. It was intended to reveal the watershed distribution and stream morphological characteristics of the Gugok gardens and to use them as basic data for future enjoyment and conservation of the Gugok gardens. The conclusion of the study is as follows. First, Of the 93 Gugok gardens that have been confirmed to exist, it was found that 11 places(11.8%) were found to have a descending(top-down) type of Gugok that develops while descending along a stream. Second, As a result of analysis of the length of the flow path for each valley, Okryudonggugok(玉流洞九曲, Namsan-gugok) in Gimcheon, Gyeongsangbuk-do was found to have the shortest length of 0.44km among the surveyed valleys, while the flow distance of Muheulgugok(武屹九曲) located in Seongju-gun and Gimcheon-si, Gyeongsangbuk-do was 31.1km, showing the longest flowing distance. The average flow path length of the Gugok Garden in Korea was 6.24km, and the standard deviation was 4.63km, indicating that the deviation between the 'curved type'e and the 'valley type' was severe. In addition, 14(15.1%) Gugok gardens were found to be partially submerged due to dam construction. Third, As a result of analyzing the waters area where Gugok garden is located, the number of Nakdong river basins was much higher at 52 sites(55.9%), followed by the Hangang river basin at 27 sites(28.7%), the Geum river basin at 9 sites(9.7%), and the Yeongsan river and Seomjin river basins at 5(5.4%). Fourth, All Gugok gardens located in the Han river region were classified as the Han river system, and the Gugok garden located on the Nakdong river was classified as the main Nakdong river system, except for 7 places including 5 places in the Nakdong Gangnam Sea water system and 2 places in the Nakdong Gangdong sea water system. As a result of synthesizing the river order of the flow path where Gugok garden is located, Gugok, which uses the main stream as the base of Gugok, is 3 places in the Hangang water system, 5 places in the Nakdong river system, 2 places in the Geumgang water system, and 1 place in the Yeongsangam/Seomjin river system. A total of 11 locations(11.5%) were found, including 36 locations(38.2%) in the first branch, 29 locations(31.2%) in the second branch, and 16 locations(17.0%) in the third branch. And Gugok garden, located on the 4th tributary, was found to be Taehwa Five-gok(太華五曲) set in Yonghwacheon Stream in Cheorwon in the Han river system, and Hoenggyegok(橫溪九曲) in Yeongcheon Hoenggye Stream in the Nakdong river system. Fifth, As a result of the river grade analysis of the rivers located in the Gugok garden Forest, the grades of the rivers located in the Gugok garden were 13 national rivers(14.0%), 7 local first-class rivers(7.5%), and 74 local second-class rivers(78.5%) was shown.