• Title/Summary/Keyword: Geum River Watershed

Search Result 148, Processing Time 0.028 seconds

Estimation of Design Flood for the Gyeryong Reservoir Watershed based on RCP scenarios (RCP 시나리오에 따른 계룡저수지 유역의 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Song, Inhong;Park, Jihoon;Song, Jung-Hun;Jun, Sang Min;Kim, Kyeung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.47-57
    • /
    • 2015
  • Along with climate change, the occurrence and severity of natural disasters have been increased globally. In particular, the increase of localized heavy rainfalls have caused severe flood damage. Thus, it is needed to consider climate change into the estimation of design flood, a principal design factor. The main objective of this study was to estimate design floods for an agricultural reservoir watershed based on the RCP (Representative Concentration Pathways) scenarios. Gyeryong Reservoir located in the Geum River watershed was selected as the study area. Precipitation data of the past 30 years (1981~2010; 1995s) were collected from the Daejeon meteorological station. Future precipitation data based on RCP2.6, 4.5, 6.0, 8.5 scenarios were also obtained and corrected their bias using the quantile mapping method. Probability rainfalls of 200-year frequency and PMPs were calculated for three different future spans, i.e. 2011~2040; 2025s, 2041~2070; 2055s, 2071~2100; 2085s. Design floods for different probability rainfalls were calculated using HEC-HMS. As the result, future probability rainfalls increased by 9.5 %, 7.8 % and 22.0 %, also design floods increased by 20.7 %, 5.0 % and 26.9 %, respectively, as compared to the past 1995s and tend to increase over those of 1995s. RCP4.5 scenario, especially, resulted in the greatest increase in design floods, 37.3 %, 36.5 % and 47.1 %, respectively, as compared to the past 1995s. The study findings are expected to be used as a basis to reduce damage caused by climate change and to establish adaptation policies in the future.

Modification of WASP5 for Ungauged Watershed Management and Its Application (미계측 유역관리를 위한 WASP5 모형의 개선 및 적용성 검토)

  • Kim, Jin-Ho;Shin, Dong-Suk;Kwun, Soon-Kuk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • This study was carried out to develop a water quality simulation model for the evaluation of an ungauged watershed. For this purpose, the WASP5 model was selected and modified. The model consists of three sub-models, LOAD-M, DYN-M, and EUT-M. LOAD-M, an empirical model, estimates runoff loadings using point and non-point source data of villages. The Geum River Estuary watershed was selected to calibrate and verify the Modified-WASP5. The LOAD-M model was established using field data of water quality and quantity at the gauging stations of the watershed and was applied to the ungauged watersheds, taking the watershed properties into consideration. The result of water quality simulation using Modified-WASP5 shows that the observed average BOD data from Gongju and Ganggyeong were 2.6 mg/L and 2.8 mg/L, and the simulated data were 2.5 mg/L and 2.4 mg/L, respectively. Generally, simulation results were in good agreement with the observed data. This study focused on formulating an integrated model for evaluating ungauged watersheds. Even though simulation results varied slightly due to limited availability of data, the model developed in this study would be a useful tool for the assessment and management of ungauged watersheds.

Analyses of Community Structure of Phytoplankton in Reservoirs Located in the Geum River Watershed in South Korea (금강 유역 호소에서 출현하는 식물플랑크톤 군집구조 특성 분석)

  • Choi, Yong Bum;Shin, Yoon Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.280-290
    • /
    • 2021
  • The present study investigated species richness and phytoplankton community structure in lakes in the Geum River Basin during autumn and spring seasons. Surveys were conducted between September and November 2019, and between April and May 2020, which corresponded to the autumn and spring seasons, respectively, to explore the distribution characteristics of the species. A total of 49 species of phytoplankton belonging to 31 genera and seven classes were identified in Cho Pyeong-ji, 51 species belonging to 29 genera and six classes were identified in Song Ak-ji, 49 species belonging to 32 genera and seven classes were identified in Cheong Cheon-ji, 82 species belonging to 45 genera and six classes were identified in Ye Dangji, and 70 species belonging to 40 genera and six classes were identified in Ganwol Lake. A total of 43 species belonging to 74 genera and seven classes were identified. The ranges of phytoplankton standing crop were as follows: 223~3533 cells mL-1 in Cho Pyeong-ji, 881~176018 cells mL-1 in Song Ak-ji, 402~6139 cells mL-1 in Cheong Cheon-ji, 262~10460 cells mL-1 in Ye Dang-ji, and 20413~330695 cells mL-1 in Ganwol Lake. Phytoplankton diversity in Cho Pyeong-ji, Song Ak-ji, Cheong Cheon-ji, Ye Dang-ji, and Ganwol Lake were 1.10~2.60, 0.56~2.03, 0.21~2.03, 0.65~2.57, and 0.44~1.12, respectively. Phytoplankton species richness in Cho Pyeong-ji, Song Ak-ji, Cheong Cheon-ji, Ye Dang-ji, and Ganwol Lake were 1.91~4.99, 1.82~3.26, 1.26~4.17, 2.07~5.37, and 1.90~2.43, respectively. Phytoplankton evenness indices in Cho Pyeong-ji, Song Ak-ji, Cheong Cheon-ji, Ye Dang-ji, and Ganwol Lake were 0.38~0.78, 0.18~0.69, 0.08~0.71, 0.22~0.72, and 0.14~0.38, respectively. Phytoplankton dominance indices in Cho Pyeong-ji, Song Ak-ji, Cheong Cheon-ji, Ye Dang-ji, and Ganwol Lake were 0.40~0.83, 0.55~0.96, 0.44~0.99, 0.42~0.93, and 0.89~0.97, respectively.

Characteristics of chemical water quality and the empirical model analysis before and after the construction of Baekje Weir (금강수계 백제보 건설 전·후의 화학적 수질특성 및 경험적 모델 분석)

  • Kim, Yu-Jin;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.48-59
    • /
    • 2019
  • This study analyzed the water quality characteristics and developed empirical models prior to and after the construction of Baekje Weir, in the Geum River watershed between 2004-2017. The comparative evaluation of the surface water chemistry before and after the four major river projects on the weirs indicated that total phosphorus (TP), based on annual data, rapidly decrease after the construction of the weir while the total nitrogen(TN) decreased. Conversely, chlorophyll-a (CHL) concentration, which is a good indicator of primary productivity, increased after the construction of the weir together with an increase in specific conductivity. Simply put, the construction of the weir led to the decrease in concentrations of N and P due to the increased water residence time (WRT), whereas the CHL :TP ratio greatly increased in magnitude. The regression analysis of the empirical model indicated that CHL had no significant relation (r=0.068, p=0.6102, n=58) with TP before the weir construction, but had a relation with TP after the weir construction (r=0.286, p<0.05, n=56). Therefore, such conditions resulted in an increase in primary productivity on a given unit of phosphorus, resulting in frequent algal blooms. In contrast, seasonal suspended solids (SS) and TP increased during the monsoon period, compared to the pre-monsoon, thereby showing positive correlations (r>0.40, p<0.01, n=163) with precipitation. If the government consistently discharges water from the weir, the phosphorus concentration will be increased due to its reversion to a lotic waterbody from a lentic waterbody hereby reducing algal blooms in the future.

Effect of Yongdam Dam Operation to Level of Reference Flows Downstream (용담댐 운영이 하류 기준유량 설정에 미치는 영향)

  • Noh, Jae-Kyoung;Yoo, Jae-Min;Oh, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1772-1776
    • /
    • 2006
  • The Ministry of Environment is determining reference flows and goal water qualities in many stations over all around riverbasin to control TMDL. Reference flow is now defined to 10 years averaged 275th minimum flow$(Q_{275})$. Dam operation takes direct effect on flows downstream. The Yongdam mutipurposed dam was constructed in 2002 and TMDL managing stations between the Daecheong dam and the Yongdam dam are the Geumbon B, C, D, E, and F in main stream of the Geum river. Geumbon F is the Daecheong dam site. Observed flows are ideal to be used to set reference flows, but simulated flows are more practical to be used to set reference flows from the cause of the Yongdam dam's operation. A system for simulating daily storages of the Yongdam dam was constructed and the DAWAST model was selected to simulate daily streamflows. Analysis period was selected for 10 years from 1996 to 2005. Scenario was set as follows; Firstly, observed outflows from the Yongdam dam are used from 2002 to 2005 and the Yongdam dam does not exist from 1995 to 2001. Secondly, the Yongdam dam existed also from 1995 to 2001 and simulated outflows from the Yongdam dam are used from 1996 to 2005 with provision of constant outflow of $7.0m^3/s$ and water supply to the Jeonju region outsided watershed of $900,000m^3/day$. In case of scenario 1 reference flows at the Geumbon B, C, D, E, F are 4.52, 6.69, 7.96, 11.17, and $13.21m^3/s$, respectively. And in case of scenario 2 reference flows at the Geumbon B, C, D, E, F are 6.27, 8.48, 9.58, 12.73, and $15.12m^3/s$, respectively.

  • PDF

A Study on the Simulation of Monthly Discharge by Markov Model (Markov모형에 의한 월유출량의 모의발생에 관한 연구)

  • 이순혁;홍성표
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.31-49
    • /
    • 1989
  • It is of the most urgent necessity to get hydrological time series of long duration for the establishment of rational design and operation criterion for the Agricultural hydraulic structures. This study was conducted to select best fitted frequency distribution for the monthly runoff and to simulate long series of generated flows by multi-season first order Markov model with comparison of statistical parameters which are derivated from observed and sy- nthetic flows in the five watersheds along Geum river basin. The results summarized through this study are as follows. 1. Both two parameter gamma and two parameter lognormal distribution were judged to be as good fitted distributions for monthly discharge by Kolmogorov-Smirnov method for goodness of fit test in all watersheds. 2. Statistical parameters were obtained from synthetic flows simulated by two parameter gamma distribution were closer to the results from observed flows than those of two para- meter lognormal distribution in all watersheds. 3. In general, fluctuation for the coefficient of variation based on two parameter gamma distribution was shown as more good agreement with the observed flow than that of two parameter lognormal distribution. Especially, coefficient of variation based on two parameter lognormal distribution was quite closer to that of observed flow during June and August in all years. 4. Monthly synthetic flows based on two parameter gamma distribution are considered to give more reasonably good results than those of two parameter lognormal distribution in the multi-season first order Markov model in all watersheds. 5. Synthetic monthly flows with 100 years for eack watershed were sjmulated by multi- season first order Markov model based on two parameter gamma distribution which is ack- nowledged to fit the actual distribution of monthly discharges of watersheds. Simulated sy- nthetic monthly flows may be considered to be contributed to the long series of discharges as an input data for the development of water resources. 6. It is to be desired that generation technique of synthetic flow in this study would be compared with other simulation techniques for the objective time series.

  • PDF

The assessment of the contribution of overland flow to basin response by means of hydrological approach (수문학적 접근법에 의한 유역응답내 지표면유동의 기여도 평가)

  • Kim Joo-Cheol;Yoon Yeo-Jin;Kim Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.553-562
    • /
    • 2006
  • The relative contributions of overland-flow and stream-flow to the response process at the basin scale are evaluated in the present study. The moments of GIUH models were applied to the data of the Bocheong watershed in the Geum river basin in Korea in order to discuss the feasibility. The GIUH model derived in this study consists of the stream path and overland region. The characteristic velocities for the flows between two cases mentioned above make a clear distinction as expected and would have more physical meaning than the ones of the model by Rodriguez-Iturbe and Valdes(1979). The path lengths of overland for each stream order are nearly constant, whereas the case of stream is shown to grow larger according to the basin sizes. As a result, the overall basin response process was founded out to be greatly under the influence of the hydrodynamic behavior of overland, and its behavior is suggested to be further researched for catching the broader meanings.

Development of Regional Regression Model for Estimating Mean Low Flow in Ungauged Basins (미계측 유역 평균갈수량 산정을 위한 지역회귀모형의 개발)

  • Lee, Tae Hee;Lee, Min Ho;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.407-416
    • /
    • 2016
  • The purpose of this study is to develop regional regression models to estimate mean low flow for ungauged basins. The unregulated streamflow data observed at 12 multipurpose dams and 4 irrigation dams were analyzed for determining mean low flows. Various types of regression models were developed using the relationship between mean low flows and various sets of watershed characteristics such as drainage area, average slope, drainage density, mean annual precipitation, runoff curve number. The performance of each regression model for estimating mean low flows was assessed by comparison with the results obtained from the observed data. It was found that a regional regression model explained by drainage area, the mean annual precipitation, and runoff curve number showed the best performance. The regression model presented in this study also gives better estimates of mean low flow than the estimates by the drainage-area ratio method and the previous regression model.

Short Term Drought Forecasting using Seasonal ARIMA Model Based on SPI and SDI - For Chungju Dam and Boryeong Dam Watersheds - (SPI 및 SDI 기반의 Seasonal ARIMA 모형을 활용한 가뭄예측 - 충주댐, 보령댐 유역을 대상으로 -)

  • Yoon, Yeongsun;Lee, Yonggwan;Lee, Jiwan;Kim, Seongjoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.61-74
    • /
    • 2019
  • In this study, the SPI (Standardized Precipitation Index) of meteorological drought and SDI (Streamflow Drought Index) of hydrological drought for 1, 3, 6, 9, and 12 months duration were estimated to analyse the characteristics of drought using rainfall and dam inflow data for Chungju dam ($6,661.8km^2$) with 31 years (1986-2016) and Boryeong dam ($163.6km^2$) watershed with 19 years (1998-2016) respectively. Using the estimated SPI and SDI, the drought forecasting was conducted using seasonal autoregressive integrated moving average (SARIMA) model for the 5 durations. For 2016 drought, the SARIMA had a good results for 3 and 6 months. For the 3 months SARIMA forecasting of SPI and SDI, the correlation coefficient of SPI3, SPI6, SPI12, SDI1, and SDI6 at Chungju Dam showed 0.960, 0.990, 0.999, 0.868, and 0.846, respectively. Also, for same duration forecasting of SPI and SDI at Boryeong Dam, the correlation coefficient of SPI3, SPI6, SDI3, SDI6, and SDI12 showed 0.999, 0.994, 0.999, 0.880, and 0.992, respectively. The SARIMA model showed the possibility to provide the future short-term SPI meteorological drought and the resulting SDI hydrological drought.

Planning objectives and strategies for the Geum river watershed water resource management (금강유역물관리를 위한 계획목표 및 전략)

  • Kim, Seong Won;Kim, Yun Su;O, Seong-Hwan;Jeong, Dan Bi;Park, Su Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.463-463
    • /
    • 2021
  • 국내에서는 물관리 기술과 물관리 여건 고도화 등의 다양한 노력을 통하여 통합물관리(IWRM: Integrated Water Resources Management)에 기틀을 만들어 왔다. 그러나 우리나라는 수량, 수질, 수재해 분야로 구분하여 다수의 부처가 물관리 업무를 수행하고 있어 물관리 사업간 연계성 부족 및 사업의 중복으로 인한 예산 낭비와 물관리 어려움이 나타나고 있다. 기후변화로 나타나는 집중호우의 발생 빈도의 증가로 도시지역과 지류하천의 홍수, 녹조의 발생으로 피해가 증가 및 하천생태계의 변화 등으로 다양한 물관리 현안이 발생하고 있는 실정이다. 인간이 살아가는데 있어 물은 없어서는 안되는 중요한 자원이다. 지역별로 도시개발과 인구의 집중, 대규모 특정작물 재배 등으로 한정된 수자원을 개발하고 이용하는데 있어 물분쟁이 지속적으로 발생하고 있어 합리적인 해결방법이 필요하다. 이에 물관리의 기본이념 및 원칙을 마련하고 국가차원의 통합적인 물관리와 유역중심의 물관리를 위한 국가·유역물관리위원회 설치, 물관리에 필요한 기본적인 사항을 규정하여 지속 가능한 물순환 체계를 확립하여 국민의 삶의 질 향상에 이바지하고자 등을 물관리기본법을 입법하였다. 물관리기본법에서는 국가차원의 물관리기본계획과 유역차원의 유역물관리종합계획을 10년마다 수립하고 5년마다 타당성을 검토하도록 명시되어 있다. 본 연구에서는 금강유역을 대상으로 수립 중에 있는 유역계획의 목표와 전략에 대하여 발표하고자 한다.

  • PDF