• Title/Summary/Keyword: Germ cell apoptosis

Search Result 35, Processing Time 0.023 seconds

C-kit Expressing Male Germ Cells were Highly Sensitive to Busulfan Treatment and Apoptosis of Male Germ Cells Induced by Busulfan Treatment was not Caused by Fas/FalsL or p53

  • Ok Do-Won;Lee Mi-Suk;Gwon Deuk-Nam;Kim Jin-Hoe
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.4-4
    • /
    • 2002
  • Male germ cell apoptosis has been extensively explored in rodent. In contrast, very little is known about their susceptibility to apoptosis stimuli of developing germ cell stages at the time when germ cell depletion after busulfan treatment occurs. Furthermore, it is still unanswered how spermatogonial stem cells are resistant to busulfan treatment. Spontaneous apoptosis of germ cells was observed in the testis of adult mice and experimentally induced busulfan treated mice increased this apoptosis to such an extent that there was a decrease in the weight of the testis. (omitted)

  • PDF

The Protective Effects of N-Acetyl-L-cysteine on Cadmium-induced Cell Apoptosis in Rat Testis

  • Kim, Ji-Sun;Soh, Jaemog
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.417-425
    • /
    • 2019
  • Cadmium (Cd) generates reactive oxygen species (ROS), which in turn cause the apoptosis of various cell types including developing germ cells in rodent testis. Ascorbic acids (AA), one of the ROS scavengers, had been reported to protect against Cd-induced apoptosis. N-Acetyl-L-cysteine (NAC), another ROS scavenger, is known to remove ROS and alleviate the Cd-induced apoptosis in various cell types. In this study we tried to elucidate how NAC affected on Cd-induced cell apoptosis in rat testis. Rats were administered with NAC before and after Cd treatment and then testicular cell apoptosis was examined. NAC treatment resulted in the reduction of Cd-induced chromosomal DNA fragmentation in agarose gel electrophoresis. Terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay showed that treatment of NAC reduced the Cd-induced apoptosis of germ cells. The administration of NAC showed that the translocation of apoptosis inducing factor (AIF) from mitochondria to nucleus was prevented, which indicated that the mechanism of Cd-induced testicular apoptosis is mediated through the release of AIF in caspase-independent manner. Taken together, the NAC may remove Cd-induced ROS and protect ROS-induced cell apoptosis in rat testis.

Functional Gene Analysis for the Protection of Male Germ Cell Injury Induced by Busulfan Treatment using cDNA Microarray Analysis

  • 최윤정;옥도원;황규찬;김진회
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.21-21
    • /
    • 2003
  • Male germ cell apoptosis has been extensively explored in rodent. In contrast, very little is known about their susceptibility to apoptosis stimuli of developing germ cell stages at the time when germ cell depletion after busulfan treatment occurs. Furthermore, it is still unanswered how spermatogonial stem cells are resistant to busulfan treatment. We examined the change of gene expression in detail using cDNA microarray analysis of mouse testis treated with busulfan. A subtoxic dose of busulfan (40mg/kg of body weight) transiently increased 228 mRNA levels among of the 8000 genes analyzed. TagMan analysis confirmed that the mRNA levels such as defensive protein, support protein, enzymatic protein, transport protein, and hormonal protein were rapidly increased. These results were re-confirmed by real-time PCR analysis. However, the expression levels of these genes induced by busulfan treatment were significantly reduced in control testis, indicating that both of male germ cells and somatic cells after busulfan treatment induces self-defense mechanism for protection of testicular cell death. Among them, we conclude that defense proteins play a key role in testis injury induced by busulfan.

  • PDF

Endonuclease G is Upregulated and Required in Testicular Germ Cell Apoptosis after Exposure to 60 Hz at 200 μT

  • Park, Sungman;Kim, Min-Woo;Kim, Ji-Hoon;Lee, Yena;Kim, Min Soo;Lee, Yong-Jun;Kim, Young-Jin;Kim, Hee-Sung;Kim, Yoon-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.142-150
    • /
    • 2015
  • Several reports supported that continuous exposure to 60 Hz magnetic field (MF) induces testicular germ cell apoptosis in vivo. We recently evaluated duration- and dose-dependent effects of continuous exposure to a 60 Hz MF on the testes in mice. BALB/c male mice were exposed to a 60 Hz MF at $100{\mu}T$ for 24 hours a day for 2, 4, 6, or 8 weeks, and at 2, 20 or $200{\mu}T$ for 24 hours a day for 8 weeks. To induce the apoptosis of testicular germ cell in mice, the minimum dose is $20{\mu}T$ at continuous exposure to a 60 Hz MF for 8 weeks, and the minimum duration is 6 weeks at continuous exposure of $100{\mu}T$. Continuous exposure to a 60 Hz MF might affect duration- and dose-dependent biological processes including apoptotic cell death and spermatogenesis in the male reproductive system of mice. The safety guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) indicates that the permissible maximum magnetic flux density for general public exposure is $200{\mu}T$ at 60 Hz EMF (ICNIRP Guidelines, 2010). In the present study, we aimed to examine the expression of pro- and anti-apoptotic genes regulated by the continuous exposure to 60 Hz at $200{\mu}T$ in Sprague-Dawley rats for 20 weeks. The continuous exposure to 60 Hz at $200{\mu}T$ does not affect the body and testicular weight in rats. However, exposure to 60 Hz MF significantly affects testicular germ cell apoptosis and sperm count. Further, the apoptosis-related gene was scrutinized after exposure to 60 Hz at $200{\mu}T$ for 20 weeks. We found that the message level of endonuclease G (EndoG) was greatly increased following the exposure to 60 Hz at $200{\mu}T$ compared with sham control. These data suggested that 60 Hz magnetic field induced testicular germ cell apoptosis through mitochondrial protein Endo G.

Involvement of macrophages in germ cell death in the rattestis with acute experimental testicular torsion

  • Moon, Changjong;Shin, Taekyun
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.329-334
    • /
    • 2004
  • Ischemia/reperfusion(I/R) injury of the rat testis causes germ cell death and infiltration of inflammatory cells. To investigate the mechanism of germ cell death in torsion of the rat testis, apoptosis and macrophage activation were studied using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling(TUNEL) method and immunohistochemistry in the testes of Sprague-Dawley rats subjected to 1.5 h of ischemia, followed by 0, 1, 3, 6, 12, 24, 48 and 96 h of reperfusion. Apoptotic, TUNEL-positive cells were found at the base of the seminiferous epithelia after I/R. TUNEL-positive cells were significantly increased 6 h after repair of the torsion, and there was a significant peak in apoptosis 24 h after reperfusion, as compared with normal or sham-operated controls. In contrast, histological evidence of germ cell necrosis in the seminiferous tubules was first visible 24 h after reperfusion. In the testis of sham-operated rats, ED2-positive resident macrophages were found diffusely in the interstitial space, while ED1-positive monocyte-like macrophages were rarely found. After I/R, ED1-positive cells were significantly increased beginning 12 h after reperfusion, while ED2-positive immunoreactivity did not change during the experimental period. Together, the results of this study confirmed that increased numbers of ED1-positive macrophages, but not resident ED2-positive macrophages, infiltrated the interstitial space surrounding damaged tubules and induced germcell death.

Changes of testosterone production in adult mouse testis and serum after wholebody irradiation

  • Chun, Ki-Jung;Kim, Jihyang;Kim, Woo-Jung;Kim, Jin-Kyu;Kim, Bonghee;Yoon, Yong-Dal
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.178-179
    • /
    • 2003
  • The testis is composed of four cell types like supporting cells, steroid-producing cells, connective tissue cells and germ cells. Apoptosis is a common phenomenon during spormatogenesis. Apoptosis of germ cells can also be induced by exposure to radiation. Previous studies have shown that most types of germ cells are rather radiosensitive while somatic cells in testis are much more radio-resistant. The somatic cells in testis are divided to mainly Sertoli and Leydig cells. Though somatic cells are more radio-resistant than germ cells, radiation can induce the impairment of their function. This damaged function of somatic cells may accelerates degeneration of germ cell indirectly. Tn the present study, we have examined the apoptotic effect of mouse testis and irradiation effect of steroidogenesis of Leydig cells after irradiation.

  • PDF

Germ Cell Apoptosis in the Testis of Transgenic Pigs

  • Chung, Hak-Jae;Kim, Bong-Ki;Ko, Yeoung-Gyu;Woo, Jei-Hyun;Kim, Jeom-Soon;Jung, Jin-Kwan;Chang, Won-Kyong
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.233-233
    • /
    • 2004
  • PURPOSE: Gene expression and apoptosis in testicular germ cells has been demonstrated in many transgenic animals. However, little is known about the transgenic pig and rates of apoptosis during spermatogenesis. METHODS : Morphological and biochemical features of apoptosis reported in other species were used to confirm that the TdT-mediated dUTP Nick end labeling (TUNEL) assay is an acceptable mothos for idendtification and quantification of apoptotic transgenic germ cells in histological tissue section from transgenic pig testis. (omitted)

  • PDF

Transgenesis and Germ Cell Engineering in Domestic Animals

  • Lee, C.K.;Piedrahita, J.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.910-927
    • /
    • 2003
  • Transgenesis is a very powerful tool not only to help understanding the basics of life science but also to improve the efficiency of animal production. Since the first transgenic mouse was born in 1980, rapid development and wide application of this technique have been made in laboratory animals as well as in domestic animals. Although pronuclear injection is the most widely used method and nuclear transfer using somatic cells broadens the choice of making transgenic domestic animals, the demand for precise manipulation of the genome leads to the utilization of gene targeting. To make this technique possible, a pluripotent embryonic cell line such as embryonic stem (ES) cell is required to carry genetic mutation to further generations. However, ES cell, well established in mice, is not available in domestic animals even though many attempt to establish the cell line. An alternate source of pluripotent cells is embryonic germ (EG) cells derived from primordial germ cells (PGCs). To make gene targeting feasible in this cell line, a better culture system would help to minimize the unnecessary loss of cells in vitro. In this review, general methods to produce transgenic domestic animals will be mentioned. Also, it will focus on germ cell engineering and methods to improve the establishment of pluripotent embryonic cell lines in domestic animals.

New strategies for germ cell cryopreservation: Cryoinjury modulation

  • Sang-Eun Jung;Buom-Yong Ryu
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.4
    • /
    • pp.213-222
    • /
    • 2023
  • Cryopreservation is an option for the preservation of pre- or post-pubertal female or male fertility. This technique not only is beneficial for human clinical applications, but also plays a crucial role in the breeding of livestock and endangered species. Unfortunately, frozen germ cells, including oocytes, sperm, embryos, and spermatogonial stem cells, are subject to cryoinjury. As a result, various cryoprotective agents and freezing techniques have been developed to mitigate this damage. Despite extensive research aimed at reducing apoptotic cell death during freezing, a low survival rate and impaired cell function are still observed after freeze-thawing. In recent decades, several cell death pathways other than apoptosis have been identified. However, the relationship between these pathways and cryoinjury is not yet fully understood, although necroptosis and autophagy appear to be linked to cryoinjury. Therefore, gaining a deeper understanding of the molecular mechanisms of cryoinjury could aid in the development of new strategies to enhance the effectiveness of the freezing of reproductive tissues. In this review, we focus on the pathways through which cryoinjury leads to cell death and propose novel approaches to enhance freezing efficacy based on signaling molecules.

Protective Effect of Panax ginseng Ethanol Extracts Against Bisphenol A (BPA) in Mouse Male Germ Cells (마우스 수컷 생식세포에서 비스페놀 A에 대한 인삼 에탄올 추출물의 보호 효과)

  • Kim, Hyung Don;Shon, Sang Hyun;Kim, Jin Seong;Lee, Hee Jung;Park, Chun Geun;Ahn, Young Sup;Lee, Sang Won;Kim, Young Ock
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.2
    • /
    • pp.138-143
    • /
    • 2015
  • This study was carried out to evaluate the preventive effect of three forms of Korean ginseng roots (fresh, white and red) against bisphenol A (BPA) toxicity in mouse male germ cells (GC-2spd, TM3, TM4). ROS (reactive oxygen species) generation were measured by DCF-DA (2',7'-dichlorohydrofluorescein diacetate) assay. Also, semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was performed to quantify the mRNA expression levels of apoptosis-related genes, Bax (pro-apoptotic gene) and Bcl2 (anti-apoptotic gene). ROS generation was increased by $50{\mu}M$ BPA, but definitely decreased by treatment with Korean ginseng extracts (fresh, white and red) in mouse male germ cells. In especial, Korean fresh ginseng extract reduced significantly ROS production to normal control. In addition, Korean fresh and white ginseng extracts suppressed the apoptosis of mouse male germ cells by fine-tuning mRNA levels of apoptotic genes changed by BPA. In general, Korean fresh ginseng extract was more effective than white ginseng extract for reducing BPA-induced oxidative stress and apoptosis in mouse male germ cells. Therefore, Korean fresh and white ginseng may help to alleviate biphenol A toxicity in mouse male germ cells.