• Title/Summary/Keyword: Geothermal heat pump

Search Result 339, Processing Time 0.024 seconds

A Study on the Operating Control of a 2-Stage Heat Pump System with Screw Compressors (스크류 2단 압축 열펌프 시스템의 운전 제어 방안에 관한 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.501-505
    • /
    • 2006
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump, which will be used in district heating and cooling. Two issues on the system control were investigated in this study, A stable 2-stage heating operation is guaranteed only if the load-side water inlet temperature is over a certain value, to where the 1-stage heating operation should be done first from a cold start. An oil shortage problem in low stage compressor, which depends on the degree of suction superheat, was solved by the proper oil level control scheme.

  • PDF

An Economic Analysis of a Secondary Waste Heat Recovery Geothermal Heating System (2단 가열식 지열시스템의 경제성 분석)

  • Shin, Jeong Soo;Kim, Sean Hay
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.249-258
    • /
    • 2017
  • This paper provides an economic analysis of a new geothermal heat pump system that reuses condenser waste heat from a Ground Source Heat Pump ($GSHP_{ch}$) to provide energy for a hot water Ground Source heat pump ($GSHP_{hw}$). After conducting feasibility tests using GLD and TRNSYS simulations, the proposed system was effectively installed and thoroughly tested. We observe that 1) the Coefficient of Performance (COP) of the $GSHP_{hw}$ and the $GSHP_{ch}$ during cooling mode improves by up to 62% and 7%, respectively; 2) the number of bore holes can be reduced by two; and 3) the hot water supply temperature of the $GSHP_{hw}$ increases by up to $60^{\circ}C$. We further conclude that 1) the reduction of two bore holes can save approximately ten million Won from the initial cost investment; and 2) the increased COP of the $GSHP_{hw}$ can save approximately one million Won in annual electricity costs.

Study on the Performance of a Variable Speed Cascade Heat Pump under Various Operating Conditions (운전조건에 따른 가변속 캐스케이드 열펌프의 성능 특성 연구)

  • Jeong, Kwangmoo;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • Most researches done on heat pumps have been on heat pumps for refrigeration, cooling and heating. There is therefore the need for more research on hot water heat pumps, especially for high temperature. Even though the cascade heat pump cycle has a great potential more efficient hot water generation even at low evaporating temperatures, it has been researched least for this purpose. In this study, the heating performance of a variable speed cascade heat pump was investigated by varying operating conditions. For the same heating capacity values, it was found that increasing the low stage compressor speed was more suitable for enhancing the performance of the system to get a higher temperature.

A Performance Estimation of Ground Source Heat Pump System Used both for Heating and Snow-melting (난방.융설 겸용 지열원 히트펌프시스템의 운전성능 평가)

  • Choi, Deok-In;Kim, Joong-Hun;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • This study proposes a hybrid geothermal system combined with heating mode and snow-melting mode for winter season in order to increase the annual operating efficiency of the GSHP(Ground Source Heat Pump). The purpose of this study is to get effectiveness of the hybrid geothermal system by the site experiments. In case of snow-melting only mode, the GSHP COP is 0.7 higher than system COP in average. And in case of hybrid mode, heating GSHP COP is 0.5 higher than snow-melting GSHP COP. And it is also found out that all COP obtained through measurement periods is higher than nominal COPs given by GSHP manufacturer. As a conclusion, it is clear that the proposed hybrid geothermal system is expected as a highly efficient system.

Performance Analysis for Open-loop Geothermal System with Spill-way technology by Real-scale Experiment (관정간 도수통로를 설치한 개방형 지열 시스템의 냉방성능 실험)

  • Kim, Hong kyo;Bae, Sangmu;Nam, Yujin;Jeoun, Oun;Oh, Jong Hyun;Lee, Byong Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.186-194
    • /
    • 2018
  • A ground-source heat pump system (GSHP) is more energy efficient than other heat-source systems because it uses annual constant underground and water temperatures. Especially, two-well geothermal systems using groundwater as the heat source can achieve higher performance than closed-loop geothermal systems. However, performance of two-well geothermal systems is decreased by occurring overflow according to scale during long-term operations. Therefore, this study presents a two-well pairing geothermal system that controls the groundwater level of a diffusion well. In addition, a two-well pairing geothermal system and an SCW geothermal system were installed, and a comparative analysis of cooling performance depending on system operation under the same load conditions was conducted. The result was that the average heat pump coefficient of performance (COP) of the two-well pairing system was 6.5, and the entire system COP was 4.3.

Research of geothermal analysis and experimental test for Standing Column Well type system (우물관정(SCW: Standing Column Well)형 냉난방 시스템의 지중열 해석과 실증 실험에 관한 연구)

  • Kwon, Iksang;Hong, Gibae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.173-173
    • /
    • 2010
  • This thesis identified basic design elements (Sustainable Yield, Temperature of Groundwater, Depth of Well, Separation Distance between wells) regarding installation of Standing Column Well, Geothermal Heat pump System by dynamic analysis.

  • PDF

Research for geothermal analysis on design of Standing Column Well type system (우물관정(SCW: Standing Column Well)형 지열 냉난방 시스템 설계를 위한 지중열 해석에 관한 연구)

  • Kwon, Ik-Sang;Rhee, Kwon-Joong;Kim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.576-580
    • /
    • 2009
  • This thesis identified basic design elements(Sustained Yield, Depth of Well, Separation Distance between wells) regarding installation of Standing Column Well, Geothermal Heat pump System by dynamic analysis.

  • PDF

A Design and Test of a Sea Water Source Heat Pump System (해수열원 히트펌프 시스템의 설계 및 운전)

  • Lee, Jae-Hun;Kim, Ji-Young;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang;Shin, Kwang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1273-1278
    • /
    • 2008
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/ evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF

Experimental Study on the MIMO Control Algorithm of a Multi-Heat Pump Based on PRBS Identification Scheme (PRBS 시스템 규명 기법 적용 멀티 열펌프의 다중입출력 제어특성에 관한 실험적 연구)

  • Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.2
    • /
    • pp.16-24
    • /
    • 2013
  • A multi-heat pump provides the benefits of comfort, energy conservation and easy maintenance. Recently, the multi-heat pump has been widely employed in small and medium-sized buildings. However, the control algorithm of the multi-heat pump are limited in the open literature due to complicated operating conditions. In this study, the MIMO control algorithm using integral optimum regulator was designed and the control performance of it was analyzed. In addition, system model of the control plant was developed by PRBS system identification scheme. The MIMO controller adopting the integral optimum regulator yielded satisfactory control performance results.

Performance Analysis of Ground Heat Exchanger in Combined Well and Open-Closed Loops Geothermal (CWG) System (밀폐형과 개방형이 결합된 복합지열시스템의 지중열교환기 성능 분석)

  • Park, Youngyun;Song, Jae-Yong;Lee, Geun-Chun;Kim, Ki-Joon;Mok, Jong-Koo;Park, Yu-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.23-29
    • /
    • 2017
  • This study was conducted to evaluate performance of geothermal heat exchanger (GHE) in the combined well and open-closed loops geothermal (CWG) systems. The CWG systems were designed to combine open loop geothermal heat pumps and closed loop geothermal heat pumps for high energy efficiency. GHE of the CWG systems could be installed at pumping wells for agricultural usage. To get optimal heat exchange capacity of GHE of the CWG systems, 4 GHEs with various materials and apertures were tested at laboratory scale. Polyethylene (PE) and stainless steel (STS) were selected as GHE materials. The maximum heat exchange capacity of GHEs were estimated to be in the range of 33.0~104 kcal/min. The heat exchange capacity of STS GHEs was 2.4~3.2 times higher than that of PE GHE. The optimal cross section area of GHE and flow rate of circulating water of GHE were estimated to be $2,500mm^2$ and 113 L/min, respectively. For more complicated GHE of the CWG systems, it is necessary to evaluate GHEs at various scales.