• Title/Summary/Keyword: Geothermal heat pump

Search Result 339, Processing Time 0.023 seconds

Analysis on Housing Energy for Applying Geothermal System in Mongolia (몽골에서의 지열 시스템 적용을 위한 주택 에너지분석)

  • Kim, Jin-Ho;Kim, Joong-Hun;Shin, Seung-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.19-23
    • /
    • 2014
  • In the capital of Mongolia where the air quality is getting worse due to the coal consumption used for electricity generation and district heating, the application of geothermal systems in the housing sector is recently designed for high class resort. In this study, the case of applying a geothermal system in a house in Mongolia is examined. The effects of passive house design on the needed heat pump capacity, as well as the annual energy consumption are analyzed. Moreover, as the initial costs, except labor fee, are assumed similar to Korea, cost analysis for several cases is examined, too. From the results, if a house is designed according to passive house standard instead of ASHRAE standard, the heat pump capacity can be expected to be reduced from 16 to 5~6 RT. Furthermore, although the initial cost of architectural cost might increased by 29 M\, the total initial cost is reduced by 14 M\, while the annual energy consumption is reduced by 14%. This is mainly driven by the fact that the geothermal system which serves as the main system to cover the building needs, with a high initial cost for fulfilling the peak requirements.

International Organizations of Geothermal Energy Resources;IGA and IEA-GIA (지열에너지자원분야 국제기구;IGA와 IEA-GIA)

  • Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.441-444
    • /
    • 2007
  • International Geothermal Association (IGA) and Geothermal Implementing Agreement (GIA) under Committee on Energy Research & Technology (CERT) of International Energy Agency (IEA) are the two major international organizations leading geothermal research, development and deployment (RD&D). IGA has been established in 1988 by geothermal societies in Europe and America and presently consists of 23 affiliated societies. Current number of members of IGA reaches 2,000 from 65 countries and its most important activity may be to organize the World Geothermal Congress (WGC) every five years. IEA-GIA has been established in 1993 and its executive committee (ExCo) consists of 11 countries, 1 organization (EC) and 3 sponsor companies. Korea became a member of ExCo on September 2005 through Korea Institute of Geoscience & Mineral Resources (KIGAM) as representative. KIGAM is also actively participating in Direct Use Annex through a task leader of several tasks.

  • PDF

RETScreen(R) Ground Source Heat Pump(GSHP) Application for Korea (RETScreen(R) 지중열 히트펌프 모듈 한국 적용에 관한 연구)

  • Naveed Ahmed T;Park Sanghyun;Lee Euijoon;Kim Byungseon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.678-683
    • /
    • 2005
  • Korea is utilizing geothermal resources mainly in the bathing and swimming facilities with very few applications for industrial processes or space heating. It is estimated that geothermal capacity and annual utilization are 36.2MWt and 761TJ/year as compared to global capacity and annual utilization of 15,145MWt and 190,699 TJ/year. RETScreen software is a user's friendly tool for analyzing the technical and financial pre-feasibility of potential Renewable Energy (RE) projects that promotes the use of RE applications through the capacity building of planners, decision-makers and industries for successful implementation of RE projects. Strong ties between Canada and Korean organizations such as Korean Solar Energy Society (KSES) and the Korea Institute of Energy Research (KIER) exist for knowledge transfer about RETScreen. In this paper, an overview of RETScreen and its ground source heat pump (GSHP) model with a practical example of an existing project of a community hall in Canada are described to illustrate effectiveness of RETScreenin the implementation of RE technologies. The same community hall project is then evaluated hypothetically considering its location at Kangnyng, Korea. The main objective is to demonstrate how RETScreen GSHP model can also be utilized effectively for GSHP applications in Korea.

  • PDF

Monitoring of Geothermal Systems Wells and Surrounding Area using Molecular Biological Methods for Microbial Species (분자생물학적 방법을 이용한 지열시스템 관정 및 주변지역 미생물종 모니터링)

  • Ahn, Chang-Min;Han, Ji-Sun;Kim, Chang-Gyun;Park, Yu-Chul;Mok, Jong-Koo;Jang, Bum-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.23-32
    • /
    • 2012
  • This study was conducted to monitor microbial species dynamics within the aquifer due to long term operation of geothermal heat pump system. The species were identified by molecular biological methods of 16S rDNA. Groundwater sample was collected from both open (S region) and closed geothermal recovery system (J region) along with the control. J measured and control as well as S measured found Ralstonia pickettii as dominant species at year 2010. In contrast, Rhodoferax ferrireducens was dominantly observed for the control of S. In 2011, Sediminibacterium sp. was universely identified as the dominant species regardless of the monitoring places and type of sample, i.e., measured or control. The difference in the dynamics between the measured and the control was not critically observed, but annual variation was more strikingly found. It reveals that possible environmental changes (e.g. ORP and DO) due to the operation of geothermal heat recovery system in aquifer could be more exceedingly preceded to differentiate annual variation of microbial species rather than positional differences.

A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building (건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (1))

  • Ryozo, Ooka;Nam, Yu-Jin;Kentaro, Sekine;Mutsumi, Yokoi;Yoshiro, Shiba;Hwang, Suck-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.148-154
    • /
    • 2005
  • Ground-source (Geothermal) heat pump (GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump (ASHP) systems. However, GSHP systems are not widespread in Japan because of their expensive boring costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial boring cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a foil-scale experiment. As a result, the average values for heat rejection were 186${\sim}$201 W/m (for pile, 25 W/m per Pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems. The initial cost of construction per unit for heat extraction and rejection is ${\yen}$72/W for this system, whereas it is f300/W for existing standard borehole systems.

  • PDF

A Study on Development of a Ground-Source Heat Pump System Utilizing Cast-in-place Concrete Pile Foundation of a Building (현장타설형 건물 기초를 이용한 지중열 공조시스템의 성능평가에 관한 연구)

  • Hwang, Suck-Ho;Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.641-647
    • /
    • 2010
  • Ground-source(Geothermal) heat pump(GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump(ASHP) systems. However, GSHP systems are not widespread because of their expensive installation costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a full-scale experiment. As a result, the average values for heat rejection were 186~201 W/m(per pile, 25 W/m per pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems.

Study on the performance analysis of SCW geothermal system by simulation and monitoring (모니터링 및 시뮬레이션을 통한 SCW형 지열 시스템의 성능인자 분석에 관한 연구)

  • Lee, SangJun;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.2
    • /
    • pp.8-15
    • /
    • 2013
  • Recently, an interest in the use of renewable energy has been growing up due to the rise of raw material price, international oil price and depletion of fossil energy. Ground source heat pump system has a high efficiency by using the constant temperature of underground and various types of the systems have been installed and utilized in the building. there are few studies on the system performance factors in the SCW system. Furthermore, even though the performance of the system depends on the temperature of heat source, the research on their relationship is rare. In this research, in order to analyze the performance factor for the open-loop system the monitoring of the real building with the standing column well systems and the simulation with building model were conducted.

Evaluation of Thermal Conductivity for Grout/Soil Formation Using Thermal Response Test and Parameter Estimation Models (열응답 시험과 변수 평가 모델을 이용한 그라우트/토양 혼합층의 열전도도 산정)

  • Sohn Byong Hu;Shin Hyun Jun;An Hyung Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • The Performance of U-tube ground heat exchanger for geothermal heat Pump systems depends on the thermal properties of the soil, as well as grout or backfill materials in the borehole. In-situ tests provide a means of estimating some of these properties. In this study, in-situ thermal response tests were completed on two vertical boreholes, 130 m deep with 62 mm diameter high density polyethylene U-tubes. The tests were conducted by adding a monitored amount of heat to water over a $17\~18$ hour period for each vertical boreholes. By monitoring the water temperatures entering and exiting the loop and heat load, overall thermal conductivity values of grout/soil formation were determined. Two parameter estimation models for evaluation of thermal response test data were compared when applied on the same temperature response data. One model is based on line-source theory and the other is a numerical one-dimensional finite difference model. The average thermal conductivity deviation between measured data and these models is of the magnitude $1\%$ to $5\%$.

Study on the Performance Evaluation of Smart Heating and Cooling Heat Pump System in a Balancing Well Cross-Conditioned Ground Heat Exchanger (Balancing Well 교차혼합 지중열교환기의 스마트 냉난방 히트펌프 시스템의 성능평가에 관한 연구)

  • Lee, Changhee;Kim, Donggyu;Yu, Byeoungseok;Kim, Booil
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a single hole operation method using a balancing well-cross-mixed underground heat exchanger, and conducted thermal performance studies of an SCW-type underground heat exchanger using a two-well. The study attempted to change the existing operating method of the two adjacent SCW underground heat exchangers with one ball each. The SCW-type geothermal heat exchanger is considered to enable up to 20% of bleed discharge at maximum load, which makes groundwater usage unequal. The efficiency factor of the geothermal system was improved by constructing the discharged water by cross-mixing two balancing wells to prevent the discharge of groundwater sources and keep the temperature of the underground heat exchanger constant. As a result of the cooling and heating operation with the existing SCW heat exchange system and the balancing well-cross-mixed heat exchange system, the measured performance coefficient improved by 23% and 12% in cooling and heating operations, respectively. In addition, when operating with a balanced cross-mixing heat exchange system, it has been confirmed that the initial basement temperature is constant with a standard deviation of 0.08 to 0.12℃.

A Study on Burial Guideline of Horizontal Geothermal Heat Exchanger based on Exit Temperature (출구 온도를 고려한 수평형 지중열교환기의 매설 지침에 관한 연구)

  • Cho, Sung-Woo;Ihm, Pyeong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.553-558
    • /
    • 2014
  • Geothermal energy can be used with a geothermal heat pump or an earth-to-air heat exchange system (EAHES), which is referred to as a "cooling tube" in Korea. In this study, we suggest EAHES burial guidelines in terms of the parameters of buried pipe length and air velocity regarding the exit air temperature of EAHES. The exit air temperature for EAHES in three regions (Changwon, Busan and Seoul) was calculated with variation in buried pipe length and air velocity at ${\Phi}100mm$ and ${\Phi}200mm$. In conclusion, variation in the buried pipe length is more effective than that of air velocity to achieve the required exit air temperature.