• Title/Summary/Keyword: Geotextile filter

Search Result 21, Processing Time 0.03 seconds

Theoretical and Experimental Investigation on Filter Criteria of Geotextile Considering Flow Conditions of Water (흐름형태별 Geoltextile의 필터기준에 관한 이론 및 실험적 고찰)

  • Cho, Sam Deok;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.163-172
    • /
    • 1990
  • The filter criteria of geotextiles to prevent excessive loss of fine particles in cohesion-less soils are largely depend on the flow conditions of water in soil/geotextile systems. In the soil/geotextile system under uni-directional flow conditions, it is adequate to retain only the coarse soil fraction because a 'self-induced' soil filter layer may form in cohesionless soil adjacent to the geotextile. In alternating flow conditions, however, a complete soil filter layer within the soil will not form and thus the geotextile pores must be small enough to retain finer particles of the soil to be protected. Based on these concepts, theoretical filtration criteria of geotextiles are developed considering the flow conditions of water. To test the validity of these criteria, laboratory testing was carried out. This indicated that large losses of fine particles would result, especially at high hydraulic gradients, short periods and low vertical loads. The revised filtration criteria are proposed evaluating effect of various design factors.

  • PDF

Drain Capacity of PVD Filter Considering the Field Condition (현장 토질특성을 고려한 연직배수재 필터의 성능평가)

  • Han, Sung-Su;Jeong, Kyeong-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • PVD (Prefabricated Vertical drain) consists of filter and core. An effective PVD has two basic filtration functions ; first to retain soil particle ; and second, to allow water to pass from the soil into the PVD core without clogging or blinding. Clogging which reduces the permeability of the geotextile filter jacket is caused by fine particles penetrating into the geotextile filter jacket in relatively low permeability soil conditions. As clogging performance increases gradually, excess pore water flow from soil is resisted and finally consolidation delays. Current soil-geotextile filter system criteria are generally based on relationships between a representative pore size of the geotextile and particle size of the soil. In Korea, PVD geotextile filter system criteria have been applied by only testing AOS (Apparent Opening Size) of filters without evaluating the filtration and clogging performance on soil-geotexile filter systems. Therefore, the filtration tests on soil-geotexile filter systems were conducted in order to evaluate the filtration and clogging performance with 3 kinds of geotextile filters. On these tests, we have applied geotextile filter system criteria on PVD in ${\bigcirc}{\bigcirc}$ sites.

  • PDF

Permeability Reduction of Geotextile Filters Induced by Clogging (폐색으로 인한 부직포의 투수능 저하 현상)

  • ;;Lakshmi N. Reddi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.481-488
    • /
    • 2000
  • The mechanism of soil-geotextile system has been studied among researchers since the application of geotextile as a replacement of graded granular filters is rapidly growing. The interaction of soils with geotextile is rather complicated so that its design criteria are mostly based on empiricism. Hence, it is essential to study the characteristics of fine particles transport into geotextile induced by the groundwater flow In this study, the permeability reduction in the soil-filter system due to clogging phenomenon is evaluated. An extensive research program is performed using two typical weathered residual soils which are sampled at Shinnae-dong and Poi-dong area in Seoul. Two separate simulation tests with weathered residual soil are peformed: the one is the filtration test(cross-plane flow test): and the other is the drainage test(in-plane flow test). Needle punched non-woven geotextiles are selected since it is often used as a drainage material in the field. The compatibility of the soil-filter system is investigated with emphasis on the clogging phenomenon. The hydraulic behaviour of the soil-filter system is evaluated by changing several testing conditions.

  • PDF

A Study of Dewatering and Filtration on Woven Geotextile Tube (직포 지오텍스타일 튜브의 여과와 탈수에 대한 연구)

  • Kim, Tae-Hyung;Jung, Soo-Jung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.31-37
    • /
    • 2006
  • The purposes of this paper are to study the use possibility of geotextile tubes for dewatering of high water content sludges and sediments and to evaluate affecting factors on dewatering. To do this, pressure filtration tests are conducted on four high water content materials with two geotextiles under two filtration pressures. Based on the test results, although woven geotextile tubes are not satisfied the soil retention criteria used in filter design commonly, a great portion of fines are retained by filter cake formation on geotextile tube's upstream side, but also after formation of filter cake, the permeability drops sharply. Higher filtration pressure tends to increase dewatering rate, but has very little effect on filtration efficiency. Dewatering capacity is affected by several factors which are related to the geotextile, but the property of sludge appears to be the dominant control factor for dewatering efficiency.

  • PDF

Filter Characteristics and Filter Criteria of Geotextiles Under Alternating Flow Conditions (교번류에 대한 Geotextile의 여과특생과 여과기준)

  • Jo, Sam-Deok;Baek, Seung-Cheol;Hong, Seong-Wan
    • Geotechnical Engineering
    • /
    • v.6 no.2
    • /
    • pp.21-34
    • /
    • 1990
  • Laboratory experiments are performed for staple fibre -nonwoven geotextiles which have been widely used in Korea to investigate the filter characteristics of soil/geoteztile system under alternating flow conditions. It is experimentally examined the effects of various design factors such as alternating hydraulic gradient, alternating period, vertical load, gradation and density of foundation soil on the filter structure, vertical permeability and soil retention of soil/geoteztile systems. Based on the experimental results, alternating flow filtration criteria- retention criteria and permeability criteria-for staple fibre-nonwoven geotextiles made in Korea are suggested.

  • PDF

Laboratory Assessment of Geotextile Tube for Dewatering High Water Content Material (고함수비물질의 탈수에 대한 지오텍스타일 튜브의 실험적 평가)

  • Mo, Xinghua;Kim Tae-Hyung;Moo-Young. Horace K
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.261-269
    • /
    • 2002
  • The objectives of this paper are to study the use of geotextile tribes for dewatering high water content sludges and sediments and to evaluate their feasibility and affecting fsctors. To accomplish these objectives, pressure filtration tests were conducted on woven geotextile (Geotex$\circledR$ 46T and 1212T) fir high water content materials with a modified experimental apparatus. Test results indicate that 1) the filter cake formed on the inside of the geotextile tube is the major contributor to the retention of fine particles, but also causes a decrease in permeability, 2) controlling the formation of the filter cake and thus achieving a balance between soil retention and permeability is vital to a successful project, and 3) geotextiles, sludge properties, and filtration pressures have some effects on the dewatering efficiency and dewatering rate.

Evaluation of Filter Capacity for Sea Dyke Slope Filter Layer by In-situ Rainfall Test (현장 강우재현시험을 통한 방조제 사면필터층의 필터성능분석)

  • Oh, Young-In;Kim, Seo-Ryong;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.828-837
    • /
    • 2006
  • Geotextiles consist of three major types of geosynthetic material (woven, non-woven and composite) and the functions of geotextiles are separation, reinforcement, filtration, drainage and as a moisture barrier. Although the many research scholar and engineer developed and established the design criteria and construction methodology, sustainable research still needed for optimum design methodology to the complicate field conditions. In this study, in-situ rainfall test performed to develop suitable filter system for sea dyke upper slope filter layer. In-situ rainfall test conducted for seven different filter system and measured the infiltration flux and pore pressure at various filter layer. Based on the test results, the double layered geotextile filter and sand transition system is most suitable for sea dyke upper filter layer because which system is effective for drainage of infiltration flow and minimize the deformation of sea dyke cover stone.

  • PDF

Case History of Sea Dyke Filter Construction Using Geotextile Tube Mattress (튜브형 매트리스를 활용한 방조제 필터공 축조사례연구)

  • Oh, Young-In;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2007
  • Geotextile is one of the most useful and effective polymer material in civil construction works and the main function of geotextile is separation, reinforcement, filtering and drainage. Recently, because of the shortage of natural rock, traditional forms of river and coastal structures have become very expensive to build and maintain. Therefore, the materials used in hydraulic and coastal structures are changing from the traditional rubble and concrete systems to the cheaper materials and systems. One of these alternatives employs geotextile tube technology in the construction of coastal and shore protection structures, such as embankment, see dyke, groins, jetties, detached breakwaters and so on. Geotextile tube technology has changed from being an alternative construction technique and, in fact, has advanced to become the most effective solution of choice. This paper presents case history of sea dyke filter construction using geotextile tube mattress and also, various issues related to the tube mattress design and construction technology.

  • PDF

Studie8 on Long-Term Performance Evaluation of Geotextiles -for Filter and Drainage- (필터 및 배수용 토목섬유의 장기적 성능 평가에 관한 연구)

  • 권우남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.130-139
    • /
    • 1993
  • In order to evaluate the long-term permeability performace of the geotextiles, for five different combination of geotextiles and soils the long-term column test method The results obtained are as follows; 1.The gradient range of the initial stage of the long-term permeability curves varied with respect to the soil types, while that of the final stage varied according to the interaction of the soil/geotextile system. 2.The time required for a given soil/geotextile system to reach a interactive stable stage was measured ahout 100 hours for the standard sand and 150 to 600 hours for the silty content soils, respectively. 3.There were no differences between the plain woven geotextile and the non-geotextile in the long-term permeability performance. 4.As the silt content increased, the long-term performance of the geotextiles decreased, and the limiting silt content was about 15%. 5.The thickness and area density of the geotextiles did not influence on the variation of the seepage quantities. 6.The ayerage slope and the transition time of the long-time flow curve were calculated. 7.In order to evaluate the mechanism of soil/geotextile system more perfectly, the gradient ratio test or the hydraulic conductivity test is required.

  • PDF

Clogging Phenomenon and Drainage Capacity of Tunnel Filters (터널필터재의 폐색현상과 배수성능 평가)

  • 이인모;유승헌;박광준;이석원;김홍택
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.3-18
    • /
    • 1999
  • The geotextile filter, which is installed between the ground and the lining and used as a tunnel drainage system, should have sufficient groundwater drainage capacity so that water pressure does not act on the lining. The clogging may have a serious effect on the long term behaviour of geotextile filters. Two typical weathered residual soils in Korea, Shinnae-dong soil and Poi-dong soil, were chosen to investigate the in-plane flow characteristics of the soils with varying degree of compressive stresses applied on the geotextiles and with various conditions of hydraulic gradient. The Shinnae-dong soil is a relatively coarse material classified as'SW-SM'; on the other hand, the Poi-dong soil is much finer and is classified as'SC'. Based on the comparison of the $O_{95}$ of geotextile to the $D_{15}$ of residual soils, existing clogging criteria were reviewed, and a tentative clogging criterion for the in-plane flow of the residual soil through filters was proposed. The Shinnae-dong soil showed noticeable clogging phenomenon, while the clogging of the Poi-dong soil was not so serious. The Poi-dong soil seemed to be hindered in particle transport by its cohesiveness.

  • PDF